Citation: Tan Tong-De, Zhu Xin-Qi, Jia Mei, Lin Yongjia, Cheng Jun, Xia Yuanzhi, Ye Long-Wu. Stereospecific access to bridged [n.2.1] skeletons through gold-catalyzed tandem reaction of indolyl homopropargyl amides[J]. Chinese Chemical Letters, ;2020, 31(5): 1309-1312. doi: 10.1016/j.cclet.2019.10.019 shu

Stereospecific access to bridged [n.2.1] skeletons through gold-catalyzed tandem reaction of indolyl homopropargyl amides

    *Corresponding author at: iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
    ** Corresponding authors.
    E-mail addresses: chengjun@xmu.edu.cn (J. Cheng), xyz@wzu.edu.cn (Y. Xia), longwuye@xmu.edu.cn (L.-W. Ye).
  • Received Date: 3 September 2019
    Revised Date: 8 October 2019
    Accepted Date: 18 October 2019
    Available Online: 2 November 2019

Figures(8)

  • An efficient gold-catalyzed anti-Markovnikov cycloisomerization-initiated tandem reaction of Bocprotected indole tethered homopropargyl amides has been achieved. This method delivers a wide range of valuable bridged aza-[n.2.1] skeletons (n=3-7) at room temperature with high diastereoselectivity and enantioselectivity by a chirality-transfer strategy. Moreover, the gold-catalyzed tandem reaction of homopropargyl alcohol is also achieved to produce the bridged oxa-[3.2.1] skeleton.
  • 加载中
    1. [1]

      (a) E. Aguilar, J. Santamaría, Org. Chem. Front. 6 (2019) 1513-1540;
      (b) L. Li, T.D. Tan, Y.Q. Zhang, X. Liu, L.W. Ye, Org. Biomol. Chem.15 (2017) 8483-8492;
      (c) W. Zi, F.D. Toste, Chem. Soc. Rev. 45 (2016) 4567-4589;
      (d) A.M. Asiri, A.S.K. Hashmi, Chem. Soc. Rev. 45 (2016) 4471-4503;
      (e) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev. 45 (2016) 4448-4458;
      (f) D. Pflästerer, A.S.K. Hashmi, Chem. Soc. Rev. 45 (2016) 1331-1367;
      (g) D.B. Huple, S. Ghorpade, R. Liu, Adv. Synth. Catal. 358 (2016) 1348-1367;
      (h) L. Liu, J. Zhang, Chem. Soc. Rev. 45 (2016) 506-516;
      (i) F. Pan, C. Shu, L.W. Ye, Org. Biomol. Chem. 14 (2016) 9456-9465;
      (j) D. Qian, J. Zhang, Chem. Soc. Rev. 44 (2015) 677-698;
      (k) R. Dorel, A.M. Echavarren, Chem. Rev. 115 (2015) 9028-9072;
      (l) Y. Yamamoto, Chem. Soc. Rev. 43 (2014) 1575-1600;
      (m) H.S. Yeom, S. Shin, Acc. Chem. Res. 47 (2014) 966-977;
      (n) L. Fensterbank, M. Malacria, Acc. Chem. Res. 47 (2014) 953-965;
      (o) C. Obradors, A.M. Echavarren, Acc. Chem. Res. 47 (2014) 902-912;
      (p) Y.M. Wang, A.D. Lackner, F.D. Toste, Acc. Chem. Res. 47 (2014) 889-901;
      (q) L. Zhang, Acc. Chem. Res. 47 (2014) 877-888;
      (r) A.S.K. Hashmi, Acc. Chem. Res. 47 (2014) 864-876.

    2. [2]

      (a) A. Gimeno, A.B. Cuenca, S. Suárez-Pantiga, et al., Chem. -Eur. J. 20 (2014) 683-688;
      (b) R.S. Menon, A.D. Findlay, A.C. Bissember, M.G. Banwell, J. Org. Chem. 74 (2009) 8901-8903;
      (c) V. Mamane, P. Hannen, A. Fürstner, Chem. -Eur. J. 10 (2004) 4556-4575;
      (d) D.J. Ye, J.F. Wang, X. Zhang, et al., Green Chem. 11 (2009) 1201-1208;
      (e) I.V. Seregin, V. Gevorgyan, J. Am. Chem. Soc. 128 (2006) 12050-12051.

    3. [3]

      M. Pernpointner, A.S.K. Hashmi, J. Chem. Theory Comput. 5 (2009) 2717-2725.

    4. [4]

      (a) C. Shu, M.Q. Liu, Y.Z. Sun, L.W. Ye, Org. Lett. 14 (2012) 4958-4961;
      (b) C. Shu, M.Q. Liu, S.S. Wang, L. Li, L.W. Ye, J. Org. Chem. 78 (2013) 3292-3299;
      (c) Y.F. Yu, C. Shu, B. Zhou, et al., Chem. Commun. (Camb.) 51 (2015) 2126-2129;
      (d) C. Shu, L. Li, C.H. Shen, et al., Chem. -Eur. J. 22 (2016) 2282-2290;
      (e) Y.F. Yu, C. Shu, T.D. Tan, et al., Org. Lett. 18 (2016) 5178-5181;
      (f) T.D. Tan, Y.B. Chen, M.Y. Yang, et al., Chem. Commun. (Camb.) 5 (2019) 9923-9926;
      (g) T.D. Tan, X.Q. Zhu, H.Z. Bu, et al., Angew. Chem. Int. Ed. 58 (2019) 9632-9639;
      (h) C. Shu, L. Li, T.D. Tan, D.Q. Yuan, L.W. Ye, Sci. Bull. (Beijing) 62 (2017) 352-357.

    5. [5]

      R. Ali, G. Singh, S. Singh, R.S. Ampapathi, W. Haq, Org. Lett. 18 (2016) 2848-2851.

    6. [6]

      (a) L. Zhang, Y. Wang, Z.J. Yao, S. Wang, Z.X. Yu, J. Am. Chem. Soc. 137 (2015) 13290-13300;
      (b) D. Pflästerer, S. Schumacher, M. Rudolph, A.S.K. Hashmi, Chem. -Eur. J. 21 (2015) 11585-11589;
      (c) D. Pflästerer, E. Rettenmeier, S. Schneider, et al., Chem. -Eur. J. 20 (2014) 6752-6755;
      (d) Z. Dong, C.H. Liu, Y. Wang, M. Lin, Z.X. Yu, Angew. Chem. Int. Ed. 52 (2013) 14157-14161;
      (e) L. Huang, H.B. Yang, D.H. Zhang, et al., Angew. Chem. Int. Ed. 52 (2013) 6767-6771;
      (f) L. Liu, L. Zhang, Angew. Chem. Int. Ed. 51 (2012) 7301-7304;
      (g) C. Ferrer, C.H.M. Amijs, A.M. Echavarren, Chem. -Eur. J. 13 (2007) 1358-1373.

    7. [7]

      N. Gouault, M. Le Roch, C. Cornée, M. David, P. Uriac, J. Org. Chem. 74 (2009) 5614-5617.

    8. [8]

      (a) S. Tong, C. Piemontesi, Q. Wang, M.X. Wang, J. Zhu, Angew. Chem. Int. Ed. 56 (2017) 7958-7962;
      (b) T. Arto, F.J. Fañanás, F. Rodríguez, Angew. Chem.Int. Ed. 55 (2016) 7218-7221;
      (c) S. Hosseyni, L. Wojtas, M. Li, X. Shi, J. Am. Chem. Soc.138 (2016) 3994-3997;
      (d) K. Liu, C. Zhu, J. Min, et al., Angew. Chem. Int. Ed. 54 (2015) 12962-12967;
      (e) F.S. Zhang, Q. Lai, X.D. Shi, Z.G. Song, Chin. Chem. Lett. 30 (2019) 392-394.

    9. [9]

      (a) Y. Xu, Q. Sun, T.D. Tan, et al., Angew. Chem. Int. Ed. 58 (2019) 16252-16259;
      (b) B. Zhou, Y.Q. Zhang, K. Zhang, et al., Nat. Commun. 10 (2019) 3234;
      (c) L. Li, X.Q. Zhu, Y.Q. Zhang, et al., Chem. Sci. 10 (2019) 3123-3129;
      (d) X.Q. Zhu, Q. Sun, Z.X. Zhang, et al., Chem. Commun. (Camb.) 54 (2018) 7435-7438;
      (e) X.Q. Zhu, H. Yuan, Q. Sun, et al., Green Chem. 20 (2018) 4287-4291;
      (f) W.B. Shen, B. Zhou, Z.X. Zhang, et al., Org. Chem. Front. 5 (2018) 2468-2472;
      (g) W.B. Shen, Q. Sun, L. Li, et al., Nat. Commun. 8 (2017) 1748;
      (h) B. Zhou, L. Li, X.Q. Zhu, et al., Angew. Chem. Int. Ed. 56 (2017) 4015-4019;
      (i) W.B. Shen, X.Y. Xiao, Q. Sun, et al., Angew. Chem. Int. Ed. 56 (2017) 605-609;
      (j) B. Zhou, Y.Q. Zhang, X. Liu, L.W. Ye, Sci. Bull. (Beijing) 62 (2017) 1201-1206;
      (k) C. Shu, Y.H. Wang, B. Zhou, et al., J. Am. Chem. Soc. 137 (2015) 9567-9570;
      (l) L. Li, B. Zhou, Y.H. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 8245-8249;
      (m) A.H. Zhou, Q. He, C. Shu, et al., Chem. Sci. 6 (2015) 1265-1271.

    10. [10]

      M.J. James, R.E. Clubley, K.Y. Palate, et al., Org. Lett. 17 (2015) 4372-4375.

    11. [11]

      (a) D. Pflästerer, M. Rudolph, B.F. Yates, A. Ariafard, A.S.K. Hashmi, Adv. Synth. Catal. 359 (2017) 866-874;
      (b) T. Jime'nez, J. Carreras, J. Ceccon, A.M. Echavarren, Org. Lett.18 (2016) 1410-1413;
      (c) J.M. Yang, P.H. Li, Y. Wei, X.Y. Tang, M. Shi, Chem. Commun. (Camb.) 52 (2016) 346-349;
      (d) Y. Hu, Y. Li, S. Zhang, et al., Org. Lett. 17 (2015) 4018-4021;
      (e) T. Iwai, H. Okochi, H. Ito, M. Sawamura, Angew. Chem. Int. Ed. 52 (2013) 4239-4242;
      (f) D. Pflästerer, P. Dolbundalchok, S. Rafique, et al., Adv. Synth. Catal. 355 (2013) 1383-1393;
      (g) H. Ito, A. Harada, H. Ohmiya, M. Sawamura, Adv. Synth. Catal. 355 (2013) 647-652;
      (h) B. Bolte, F. Gagosz, J. Am. Chem. Soc. 133 (2011) 7696-7699;
      (i) I.D.G. Watson, S. Ritter, F.D. Toste, J. Am. Chem. Soc. 131 (2009) 2056-2057.

    12. [12]

      C. Zhu, X. Zhang, X. Lian, S. Ma, Angew. Chem. Int. Ed. 51 (2012) 7817-7820.

  • 加载中
    1. [1]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    2. [2]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    3. [3]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    4. [4]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    5. [5]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    6. [6]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    7. [7]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    8. [8]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    9. [9]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    10. [10]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    11. [11]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    12. [12]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    13. [13]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    14. [14]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    15. [15]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    16. [16]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    17. [17]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    18. [18]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    19. [19]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    20. [20]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

Metrics
  • PDF Downloads(4)
  • Abstract views(735)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return