Citation: Mi Xia, Kong Yuanfang, Zhang Jingyu, Pi Chao, Cui Xiuling. Visible-light-promoted sulfonylmethylation of imidazopyridines[J]. Chinese Chemical Letters, ;2019, 30(12): 2295-2298. doi: 10.1016/j.cclet.2019.09.040 shu

Visible-light-promoted sulfonylmethylation of imidazopyridines

    * Corresponding authors.
    E-mail addresses: jyzhang2004@hactcm.edu.cn (J. Zhang), cuixl@zzu.edu.cn (X. Cui).
  • Received Date: 7 September 2019
    Revised Date: 16 September 2019
    Accepted Date: 19 September 2019
    Available Online: 19 December 2019

Figures(5)

  • The visible light promoted C-H sulfonylmethylation of imidazopyridines with easily accessible bromomethyl sulfones under mild reaction conditions was described. This protocol provides an effective and practical access to sulfonylmethylated imidazopyridines with good functional group tolerance. The desired products were provided in moderate to excellent yields for 50 examples at room temperature. The method could also be an attractive strategy to install a methyl group on imidazopyridines.
  • 加载中
    1. [1]

      (a) P.A. Jones, D. Takai, Science 293 (2001) 1068-1070;
      (b) Y. Umezawa, O. Nishio, Nucleic Acids Res. 30 (2002) 2183-2192;
      (c) R. Jaenisch, A. Bird, Nat. Genet. 33 (2003) 245-254;
      (d) H. Sasaki, Y. Matsui, Nat. Rev. Genet. 9 (2008) 129-140;
      (e) T.V. Mishanina, E.M. Koehn, A. Kohen, Bioorg. Chem. 43 (2012) 37-43;
      (f) L. Zhang, X. Ding, J. Cui, et al., Nature 481 (2012) 204-208.

    2. [2]

      (a) E.J. Barreiro, A.E. Kummerle, C.A. Fraga, Chem. Rev. 111 (2011) 5215-5246;
      (b) H. Schçnherr, T. Cernak, Angew. Chem. Int. Ed. 52 (2013) 12256-12267.

    3. [3]

      F. Serpier, F. Pan, W.S. Ham, et al., Angew. Chem. Int. Ed. 57 (2018) 10697-10701.  doi: 10.1002/anie.201804628

    4. [4]

      (a) Y. Chen, Chem. -Eur. J. 25 (2019) 3405-3439;
      (b) G. Yan, A.J. Borah, L. Wang, M. Yang, Adv. Syn. Catal. 357 (2015) 1333-1350.

    5. [5]

      (a) F. Minisci, R. Bernardi, F. Bertini, R. Galli, M. Perchinummo, Tetrahedron 27 (1971) 3575-3579;
      (b) C. Punta, F. Minisci, Trends Heterocycl. Commun. Chem. 13 (2008) 1-68;
      (c) M.A. Duncton, Med. Chem. Res. 2 (2011) 1135-1161;
      (d) J. Tauber, D. Imbr, T. Opatz, Molecules 19 (2014) 16190-16222.

    6. [6]

      (a) M. Janda, J. Šrogl, I. Stibor, M. Němec, P. Vopatrna', Tetrahedron Lett. 14 (1973) 637-638;
      (b) M. Araki, M. Maeda, Y. Kawazoe, Tetrahedron 32 (1976) 337-340;
      (c) D.A. DiRocco, K. Dykstra, S. Krska, et al., Angew. Chem. Int. Ed. 53 (2014) 4802-4806;
      (d) P.Z. Zhang, J.A. Li, L. Zhang, et al., Green Chem. 19 (2017) 919-923.

    7. [7]

      (a) B.M. Bertilsson, B. Gustafsson, I. Kühn, K. Torssell, Acta Chem. Scand. 24 (1970) 3590-3598;
      (b) C. Giordano, F. Minisci, V. Tortelli, E. Vismara, J. Chem. Soc., Perkin Trans. Ⅱ 2 (1984) 293-295;
      (c) C. Crean, N.E. Geacintov, V. Shafirovich, J. Phys. Chem. B 113 (2009) 12773-12781;
      (d) K. Kawai, Y.S. Li, M.F. Song, H. Kasai, Bioorg. Med. Chem. Lett. 20 (2010) 260-265.

    8. [8]

      (a) J. Jin, D.W.C. Macmillan, Nature 525 (2015) 87-90;
      (b) K. Natte, H. Neumann, M. Beller, R.V. Jagadeesh, Angew. Chem. Int. Ed. 56 (2017) 6384-6394;
      (c) W. Liu, X. Yang, Z.Z. Zhou, C.J. Li, Chem 2 (2017) 688-702.

    9. [9]

      (a) M. Maeda, K. Nushi, Y. Kawazoe, Tetrahedron 30 (1974) 2677-2682;
      (b) S. Hix, M.S. Morais, O. Augusto, Free Radical Biol. Med.19 (1995) 293-301;
      (c) W. Jo, J. Kim, S. Choi, S.H. Cho, Angew. Chem. Int. Ed. 55 (2016) 9690-9694.

    10. [10]

      (a) A. Gualandi, E. Matteucci, F. Monti, et al., Chem. Sci. 8 (2017) 1613-1620; (b) Q. Huang, S.Z. Zard, Org. Lett. 20 (2018) 1413-1416; (c) S.C. Lu, H.S. Li, Y.L. Gong, et al., J. Org. Chem. 83 (2018) 15415-15425.

    11. [11]

      J. Gui, Q. Zhou, C. Pan, et al., J. Am. Chem. Soc. 136 (2014) 4853-4856.  doi: 10.1021/ja5007838

    12. [12]

      (a) F. Liu, P. Li, J. Org. Chem. 81 (2016) 6972-6979;
      (b) G. Filippini, M. Silvi, P. Melchiorre, Angew. Chem. Int. Ed. 56 (2017) 4447-4451.

    13. [13]

      (a) A.T. Baviskar, S.M. Amrutkar, N. Trivedi, et al., ACS Med. Chem. Lett. 6 (2015) 481-485;
      (b) C. Enguehard-Gueiffier, A. Gueiffier, Mini-Rev. Med. Chem. 7 (2007) 888-899.

    14. [14]

      (a) A. Douhal, F. Amat-Guerri, A.U. Acuña, J. Phys. Chem. 99 (1995) 76-80;
      (b) S. Takizawa, J. Nishida, Y. Yamashita, Mol. Cryst. Liq. Cryst. 455 (2006) 381-385.

    15. [15]

      T.S. Harrison, G.M. Keating, CNS Drugs 19 (2005) 65.  doi: 10.2165/00023210-200519010-00008

    16. [16]

      S.Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 46 (1990) 61-72.
       

    17. [17]

      T. Ueda, K. Mizusgige, K. Yukiiri, T. Takahashi, Cerebrovasc. Dis. 16 (2003) 396-401.  doi: 10.1159/000072563

    18. [18]

      (a) J. Koubachi, S. El Kazzouli, M. Bousmina, G. Guillaumet, Eur. J. Org. Chem. (2014) 5119-5138;
      (b) A.K. Bagdi, A. Hajra, Chem. Rec. 16 (2016) 1868-1885;
      (c) C. Ravi, S. Adimurthy, Chem. Rec. 17 (2017) 1019-1038;
      (d) L. Tian, S. Lu, Z. Zhang, et al., J. Org. Chem. 84 (2019) 5213-5221.

    19. [19]

      S. Lu, X. Zhu, K. Li, et al., J. Org. Chem. 81 (2016) 8370-8377.  doi: 10.1021/acs.joc.6b01552

    20. [20]

      (a) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev.113 (2013) 5322-5363;
      (b) D. Staveness, I. Bosque, C.R.J. Stephenson, Acc. Chem. Res. 49 (2016) 2295-2306;
      (c) C.S. Wang, P.H. Dixneuf, J.F. Soule', Chem. Rev. 118 (2018) 7532-7585;
      (d) S. Crespi, M. Fagnoni, Top. Heterocycl. Chem. 54 (2018) 1-70;
      (e) L. Marzo, S.K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 57 (2018) 10034-10072.

    21. [21]

      (a) J. Wu, X. Cui, L. Chen, G. Jiang, Y. Wu, J. Am. Chem. Soc. 131 (2009) 13888-13889;
      (b) Z. Wu, C. Pi, X. Cui, J. Bai, Y. Wu, Adv. Synth. Catal. 355 (2013) 1971-1976;
      (c) C. Pi, X. Cui, X. Liu, et al., Org. Lett. 16 (2014) 5164-5167;
      (d) C. You, C. Pi, Y. Wu, X. Cui, Adv. Synth. Catal. 360 (2018) 4068-4072;
      (e) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (f) Z. Yang, L. Jie, Z. Yao, Z. Yang, X. Cui, Adv. Synth. Catal. 361 (2019) 214-218;
      (g) T. Yuan, C. Pi, C. You, et al., Chem. Commun. 55 (2019) 163-166;
      (h) C. Pi, X. Yin, X. Cui, Y. Ma, Y. Wu, Org. Lett. 21 (2019) 2081-2084;
      (i) J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 21 (2019) 4067-4071;
      (j) Z. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378.

  • 加载中
    1. [1]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    2. [2]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    3. [3]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    4. [4]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    9. [9]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    10. [10]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    11. [11]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    12. [12]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    13. [13]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    14. [14]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    15. [15]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    16. [16]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    17. [17]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    18. [18]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    19. [19]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    20. [20]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

Metrics
  • PDF Downloads(7)
  • Abstract views(586)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return