Citation: Feng Yadong, Liu Ying, Fu Qi, Zou Zhongai, Shen Jinhai, Cui Xiuling. Construction of diaminobenzoquinone imines via ferrocene-initiated radical reaction of benzoquinone with amines[J]. Chinese Chemical Letters, ;2020, 31(3): 733-735. doi: 10.1016/j.cclet.2019.09.026 shu

Construction of diaminobenzoquinone imines via ferrocene-initiated radical reaction of benzoquinone with amines

    * Corresponding authors at: College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China.
    E-mail addresses: fengyd@hxxy.edu.cn (Y. Feng), cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 24 July 2019
    Revised Date: 9 September 2019
    Accepted Date: 12 September 2019
    Available Online: 12 September 2019

Figures(3)

  • A ferrocene-initiated radical reaction of benzoquinone with amines has been successfully developed for the direct access to diaminobenzoquinone imines in high yields, in which the commercially available and cheap ferrocene was employed as a radical initiator and TBHP was used as an oxidant. Moreover, this reaction could be achieved with low loading of ferrocene (0.5 mol%). This protocol is highly efficient with good substrate tolerance and provides a new approach for the construction of benzoquinone imines with potential pharmaceutical interest.
  • 加载中
    1. [1]

      (a) E. Prochazka, B.I. Escher, M.J. Plewa, F.D.L. Leusch, Chem. Res. Toxicol. 28 (2015) 2059-2068;
      (b) R. Mout, Z.D. Xu, A.K.H. Wolf, V.J. Davisson, G.K. Jarori, Malar. J.11 (2012) 54-54;
      (c) D. Tasdemir, R. Brun, V. Yardley, S.G. Franzblau, P. Ruedi, Chem. Biodiv. 3 (2006) 1230-1237;
      (d) L.F. Fieser, E.M. Chamberlin, J. Am. Chem. Soc. 70 (1948) 71-75;
      (e) B. Joy, S.N. Kumar, M.S. Soumya, et al., Phytomedicine 21 (2014) 1292-1297;
      (f)A.Cavalli, M.L.Bolognesi, S.Capsoni, etal., Angew.Chem.Int.Ed.46 (2007)3689-3692;
      (g) T.J. Monks, P. Hanzlik, G.M. Cohen, D. Ross, D.G. Graham, Toxicol. Appl. Pharmacol. 112 (1992) 2-16.

    2. [2]

      (a) J. Yu, H. Zhang, Q. Lu, et al., Chem. Ind. Eng. Progress 34 (2015) 1115-1121;
      (b) M.R. Halhalli, B. Sellergren, Polym. Chem. 6 (2015) 7320-7332;
      (c) M.A. Hanna, M.M. Girges, Acta Polym. 41 (1990) 354-360;
      (d) S. Rajappa, S.J. Shenoy, Tetrahedron 42 (1986) 5739-5746.

    3. [3]

      S. Rajappa, R. Sreenivasan, A.V. Rane, Tetrahedron Lett. 24 (1983) 3155-3158.  doi: 10.1016/S0040-4039(00)88121-6

    4. [4]

      V. Nair, C. Rajesh, R. Dhanya, A.U. Vinod, Tetrahedron Lett. 42 (2001) 2045-2046.  doi: 10.1016/S0040-4039(01)00072-7

    5. [5]

      V. Nair, R. Dhanya, S. Viji, Tetrahedron 61 (2005) 5843-5848.  doi: 10.1016/j.tet.2005.04.008

    6. [6]

      K.A. Parker, T.L. Mindt, Org. Lett. 4 (2002) 4265-4268.  doi: 10.1021/ol026849x

    7. [7]

      (a) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247-9301;
      (b) J. Kim, S. Chang, Angew. Chem. Int. Ed. 53 (2014) 2203-2207;
      (c) T. Kang, Y. Kim, D. Lee, Z. Wang, S. Chang, J. Am. Chem. Soc.136 (2014) 4141-4144;
      (d) H. Hwang, J. Kim, J. Jeong, S. Chang, J. Am. Chem. Soc. 136 (2014) 10770-10776;
      (e) C. Pi, X. Cui, Y. Wu, J. Org. Chem. 80 (2015) 7333-7339;
      (f) M.E. Wei, L.H. Wang, Y.Y. Li, X. Cui, Chin. Chem. Lett. 26 (2015) 1336-1340;
      (g) X. Han, P. Lin, Q. Li, Chin. Chem. Lett. 30 (2019) 1495-1502;
      (h) S. Yuan, S. Wang, M. Zhao, et al., Chin. Chem. Lett. 31 (2020) 349-352;
      (i) Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31 (2020) 373-376;
      (j) X. Zhang, S. Dong, Q. Ding, X. Fan, G. Zhang, Chin.Chem. Lett. 30 (2019) 375-378;
      (k) L. Xie, S. Peng, L. Jiang, et al., Org. Chem. Front. 6 (2019) 167-171;
      (l) L. Xie, S. Peng, F. Liu, et al., ACS Sustainable Chem. Eng. 7 (2019) 7193-7199.

    8. [8]

      J.A. Jordan-Hore, C.C.C. Johansson, M. Gulias, E.M. Beck, M.J. Gaunt, J. Am. Chem. Soc. 130 (2008) 16184-16186.  doi: 10.1021/ja806543s

    9. [9]

      S.M. Paradine, M.C. White, J. Am. Chem. Soc. 134 (2012) 2036-2039.  doi: 10.1021/ja211600g

    10. [10]

      (a) Y. Feng, Y. Li, Y. Yu, L. Wang, X. Cui, RSC Adv. 8 (2018) 8450-8454;
      (b) Y. Feng, Z. Zhang, Q. Fu, et al., Chin. Chem. Lett. 31 (2020) 58-60.

    11. [11]

      (a) C. Liu, D. Liu, A. Lei, Acc. Chem. Res. 47 (2014) 3459-3470;
      (b) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100;
      (c) R. Braslau, M.O. Anderson, F. Rivera, et al., Tetrahedron 58 (2002) 5513-5523;
      (d) S. Bath, N.M. Laso, H. Lopez-Ruiz, B. Quiclet-Sire, S.Z. Zard, Chem. Commun. 34 (2003) 204-205;
      (e) J. Wang, C. Liu, J. Yuan, A. Lei, Angew. Chem. Int. Ed. 52 (2013) 2256-2259;
      (f) J. Xie, J. Yu, M. Rudolph, F. Rominger, A.S. Hashmi, Angew. Chem. Int. Ed. 55 (2016) 9416-9421;
      (g) C. Wang, J. Qin, X. Shen, et al., Angew. Chem. Int. Ed. 55 (2016) 685-688;
      (h) L.Y. Xie, S. Peng, F. Liu, et al., Org. Chem. Front. 5 (2018) 2604-2609;
      (i) L.Y. Xie, S. Peng, F. Liu, et al., Adv. Synth. Catal. 360 (2018) 4259-4264;
      (j) L. Xie, T. Fang, J. Tan, et al., Green Chem. 21 (2019) 3858-3863.

    12. [12]

      (a) D. Leifert, C.G. Daniliuc, A. Studer, Org. Lett. 15 (2013) 6286-6289;
      (b) S. Wertz, D. Leifert, A. Studer, Org. Lett. 15 (2013) 928-931.

    13. [13]

      Y. Feng, H. Zhang, Y. Yu, L. Yang, X. Cui, Eur. J. Org. Chem. 16 (2019) 2740-2744.

    14. [14]

      (a) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (b) L. Xu, T. Li, L. Wang, X. Cui, J. Org. Chem. 84 (2019) 560-567;
      (c) Z. Yang, L. Jie, Z. Yao, et al., Adv. Catal. Synth. 1 (2019) 214-258;
      (d) P. Chao, X. Yin, X. Cui, Y. Ma, Y. Wu, Org. Lett. 7 (2019) 2081-2084;
      (e) J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 11 (2019) 4067-4071; f) S. Huang, H. Li, X. Sun, et al., Org. Lett. 21 (2019) 5570-5574;
      (g) B. Wu, Z. Yang, H. Zhang, L. Wang, Cui X, Chem. Commun. 55 (2019) 4190-4193;
      (h) Z. Yang, Z. Song, L. Jie, L. Wang, X. Cui, Chem. Commun. 55 (2019) 6094-6097;
      (i) T. Yuan, C. Pi, C. You, et al., Chem. Commun. 55 (2019) 163-166;
      (k) T. Wan, S. Du, C. Pi, Y. Wang, R. Li, Y. Wu, X. Cui, ChemCatChem 11 (2019) 3791-3796;
      (l) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361 (2019) 1766-1770;
      (m) Z.H. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378.

  • 加载中
    1. [1]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    2. [2]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    3. [3]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    4. [4]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    5. [5]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    6. [6]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    7. [7]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    8. [8]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    9. [9]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    10. [10]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    11. [11]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    12. [12]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    13. [13]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    14. [14]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    15. [15]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    16. [16]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    17. [17]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    18. [18]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    19. [19]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    20. [20]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

Metrics
  • PDF Downloads(8)
  • Abstract views(707)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return