Citation: He Yicheng, Pi Chao, Wu Yangjie, Cui Xiuling. Ring opening [3+2] cyclization of azaoxyallyl cations with benzo[d]isoxazoles: Efficient access to 2-hydroxyaryloxazolines[J]. Chinese Chemical Letters, ;2020, 31(2): 396-400. doi: 10.1016/j.cclet.2019.09.025 shu

Ring opening [3+2] cyclization of azaoxyallyl cations with benzo[d]isoxazoles: Efficient access to 2-hydroxyaryloxazolines

    * Corresponding authors.
    E-mail addressess: pichao@zzu.edu.cn (C. Pi), cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 22 July 2019
    Revised Date: 7 September 2019
    Accepted Date: 12 September 2019
    Available Online: 13 September 2019

Figures(5)

  • A selective ring-opening [3+2] cyclization reaction of benzo[d]isoxazoles with 2-bromo-propanamides has been developed. The azaoxyallyl cation intermediates are employed as C~O 3-atom synthon to build oxa-heterocycles via the selectivity of suitable cyclization partners. This transformation provides rapid access to highly functionalized 2-hydroxyaryl-oxazolines under mild conditions and excellent regioselectivity.
  • 加载中
    1. [1]

      (a) A. Padwa, W.H. Pearson, Synthetic Applications of 1, 3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, John Wiley & Sons, Hoboken, 2003;
      (b) G. Pandey, P. Banerjee, S.R. Gadre, Chem. Rev. 106 (2006) 4484-4517;
      (c) T. Hashimoto, Y. Takiguchi, K. Maruoka, J. Am. Chem. Soc.135 (2013) 11473-11476;
      (d) H. Li, R.P. Hughes, J. Wu, J. Am. Chem. Soc. 136 (2014) 6288-6296;
      (e) R. Narayan, M. Potowski, Z.J. Jia, et al., Acc. Chem. Res. 47 (2014) 1296-1310;
      (f) M. Wang, Z. Huang, J. Xu, Y.R. Chi, J. Am. Chem. Soc. 136 (2014) 1214-1217;
      (g) T. Hashimoto, K. Maruoka, Chem. Rev. 115 (2015) 5366-5412;
      (h) H. Li, J. Wu, Synthesis 47 (2015) 22-33;
      (i) H. Santos, A. Distiller, A.M. D'Souza, et al., Org. Chem. Front. 2 (2015) 705-712;
      (j) S.I. Murahashi, Y. Imada, Chem. Rev. 119 (2019) 4684-4716.

    2. [2]

      (a) I. Lengyel, J.C. Sheehan, Angew. Chem. Int. Ed. 7 (1968) 25-36;
      (b) Y. Kikugawa, M. Shimada, M. Kato, T. sakamoto, Chem. Pharm. Bull. 41 (1993) 2192-2194;
      (c) K.L. Barnes, A.K. Koster, C.S. Jeffrey, Tetrahedron Lett. 55 (2014) 4690-4696.

    3. [3]

      J. Xuan, X. Cao, X. Cheng, Chem. Commun. 54(2018) 5154-5163.  doi: 10.1039/C8CC00787J

    4. [4]

      (a) C.S. Jeffrey, K.L. Barnes, J.A. Eickhoff, et al., J. Am. Chem. Soc. 133 (2011) 7688-7691;
      (b) C.S. Jeffrey, A. Acharya, J. Eickhoff, Synthesis 45 (2013) 1825-1836.

    5. [5]

      (a) Y. An, H. Xia, J. Wu, Chem. Commun. 52 (2016) 10415-10418;
      (b)Q.Jia, D.Li, M.Lang, K.Zhang, J.Wang, Adv.Synth.Catal.359 (2017)3837-3842;
      (c) G. Wang, R. Chen, M. Wu, et al., Tetrahedron Lett. 58 (2017) 847-850;
      (d) G. Wang, S. Zhao, R. Chen, et al., Tetrahedron Lett. 58 (2017) 4308-4311;
      (e) J. Xuan, X. Cheng, X. Cao, ChemistrySelect 2 (2017) 4364-4367;
      (f) H.W. Zhao, Y.D. Zhao, Y.Y. Liu, et al., Eur. J. Org. Chem. 24 (2017) 3466-3472;
      (g) H.W. Zhao, Y.D. Zhao, Y.Y. Liu, et al., RSC Adv. 7 (2017) 12916-12922;
      (h) B. Balde, G. Force, L. Marin, et al., Org. Lett. 20 (2018) 7405-7409;
      (i) X. Cheng, X. Cao, J. Xuan, W.J. Xiao, Org. Lett. 20 (2017) 52-55;
      (j) M.C. DiPoto, J. Wu, Org. Lett. 20 (2018) 499-501;
      (k) D. Ji, J. Sun, Org. Lett. 20 (2018) 2745-2748;
      (l) R. Singh, K. Nagesh, D. Yugandhar, et al., Org. Lett. 20 (2018) 4848-4853;
      (m) G. Wang, R. Chen, S. Zhao, et al., Tetrahedron Lett. 59 (2018) 2018-2020;
      (n) X. Xu, K. Zhang, P. Li, H. Yao, A. Lin, Org. Lett. 20 (2018) 1781-1784;
      (o) Y. Zhang, H. Ma, X. Liu, et al., Org. Biomol. Chem. 16 (2018) 4439-4442;
      (p) X. Cheng, X. Cao, S.J. Zhou, et al., Adv. Synth. Catal. 361 (2019) 1230-1235;
      (q) Z.L. He, Y. Chen, X. Wang, M. Ni, G. Wang, Tetraherdron 75 (2019) 130461.

    6. [6]

      (a) A. Acharya, D. Anumandla, C.S. Jeffrey, J. Am. Chem. Soc.137 (2015) 14858-14860;
      (b) M.C. DiPoto, R.P. Hughes, J. Wu, J. Am. Chem. Soc.137 (2015) 14861-14864;
      (c) W. Ji, L. Yao, X. Liao, Org. Lett. 18 (2016) 628-630;
      (d) K. Zhang, X. Xu, J. Zheng, et al., Org. Lett. 19 (2017) 2596-2599.

    7. [7]

      (a) A. Acharya, K. Montes, C.S. Jeffrey, Org. Lett. 18 (2016) 6082-6085;
      (b) K. Zhang, C. Yang, H. Yao, A. Lin, Org. Lett. 18 (2016) 4618-4621;
      (c) Q. Jia, Z. Du, K. Zhang, J. Wang, Org. Chem. Front. 4 (2017) 91-94;
      (d) S. Jiang, K. Li, J. Yan, et al., J. Org. Chem. 82 (2017) 9779-9785;
      (e) P.L. Shao, Z.R. Li, Z.P. Wang, et al., J. Org. Chem. 82 (2017) 10680-10686;
      (f) S.J. Zhou, X. Cheng, J. Xuan, Asian J. Org. Chem. 8 (2019) 1-5;
      (g) V. Jaiswal, B. Mondal, K. Singh, et al., Org. Lett. 21 (2019) 5848-5852.

    8. [8]

      C. Li, K. Jiang, Q. Ouyang, T.Y. Liu, Y.C. Chen, Org. Lett. 18(2016) 2738-2741.  doi: 10.1021/acs.orglett.6b01194

    9. [9]

      (a) T. Keumi, T. Morita, K. Teramoto, et al., J. Org. Chem. 51 (1986) 3439-3446;
      (b) H. Maruoka, F. Okabe, K.J. Yamagata, Heterocycles 74 (2007) 383-396;
      (c) J. Yuan, C.B. Rao, Y. Liang, et al., Adv. Synth. Catal. 361 (2019) 160-169.

    10. [10]

      (a) X. Lei, M. Gao, Y. Tang, Org. Lett. 18 (2016) 4990-4993;
      (b) Y.P. Han, X.S. Li, Z. Sun, et al., Adv. Synth. Catal. 359 (2017) 2735-2740;
      (c) Z. Chen, C. Han, C. Fan, G. Liu, S. Pu, ACS Omega 3 (2018) 8160-8168;
      (d) Y.B. Pandit, R.L. Sahani, R.S. Liu, Org. Lett. 20 (2018) 6655-6658.

    11. [11]

      (a) C.G. Marshall, M.D. Burkart, T.A. Keating, et al., Biochemistry 40 (2001) 10655-10663;
      (b) R. Bergeron, N. Bharti, S. Singh, Synthesis 7 (2007) 1033-1037;
      (c)A.Sakakura, S.Umemura, R.Kondo, etal., Adv.Synth.Catal.349 (2007)551-555;
      (d) P. Fu, P. Liu, H. Qu, et al., J. Nat. Prod. 74 (2011) 2219-2223;
      (e) N. Liu, F. Shang, L. Xi, Y. Huang, Mar. Drugs 11 (2013) 1524-1533;
      (f) W.J. Wu, J.W. Zhang, W.J. Zhang, S.P. Wei, Heterocycles 89 (2014) 1656-1661;
      (g) C. Ghosh, S. Pal, A. Patel, et al., Org. Lett. 20 (2018) 6511-6515.

    12. [12]

      (a) D.S.C. Black, M. Wade, Aust. J. Chem. 25 (1972) 1797-1810;
      (b) H. Yang, M.A. Khan, K.M. Nicholas, Organometallics 12 (1993) 3485-3494;
      (c) S. Rajaram, M.S. Sigman, Org. Lett. 4 (2002) 3399-3401;
      (d) D. Franco, M. Gómez, F. Jiménez, et al., Organometallics 23 (2004) 3197-3209;
      (e) J.X. Qiao, T.C. Wang, H. Carol, et al., Org. Lett.13 (2011) 1804-1807;
      (f) W. Dan, H. Geng, J. Qiao, et al., Molecules 21 (2016) 96.

    13. [13]

      (a) T. Yuan, C. Pi, C. You, et al., Chem. Commun. 55 (2018) 163-166;
      (b) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361 (2019) 1766-1770;
      (c) J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 21 (2019) 4067-4071;
      (d) Z. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378;
      (e) Z. Yang, C. Pi, X. Cui, Y. Wu, Org. Chem. Front. 6 (2019) 2897-2901;
      (f) L. Xu, L. Wang, Y. Feng, et al., Org. Lett. 19 (2017) 4343-4346;
      (g) Y. Li, C. Jia, H. Li, et al., Org. Lett. 20 (2018) 4930-4933;
      (h) Z. Yang, L. Jie, Z. Yao, X. Yang, X. Cui, Adv. Synth. Catal. 361 (2019) 214-218;
      (i) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910.

    14. [14]

      J. Feng, M. Zhao, X. Lin, J. Org. Chem. 84 (2019) 9548-9560.  doi: 10.1021/acs.joc.9b01166

    15. [15]

      (a) M. Harmata, C. Huang, P. Rooshenas, P.R. Schreiner, Angew. Chem. Int. Ed. 47 (2008) 8696-8699;
      (b) A.G. Myers, J.K. Barbay, Org. Lett. 3 (2001) 425-428.

  • 加载中
    1. [1]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    2. [2]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    3. [3]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    4. [4]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    5. [5]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    6. [6]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    7. [7]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    10. [10]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(6)
  • Abstract views(1092)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return