Citation: Yao Wei, Zhang Yilin, Zhu Haiyan, Ge Chenyang, Wang Dawei. The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C-N bond formation[J]. Chinese Chemical Letters, ;2020, 31(3): 701-705. doi: 10.1016/j.cclet.2019.08.049 shu

The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C-N bond formation

    * Corresponding author.
    E-mail address: wangdw@jiangnan.edu.cn (D. Wang).
  • Received Date: 4 July 2019
    Revised Date: 10 August 2019
    Accepted Date: 27 August 2019
    Available Online: 28 August 2019

Figures(7)

  • Several novel pyridine-oxadiazole iridium complexes were synthesized and characterized through X-ray crystallography. The designed iridium complexes revealed surprisingly high catalytic activity in C-N bondformation of amides and benzyl alcohols with the assistance of non-coordinating anions. In an attempt to achieve borrowing hydrogen reactions of amides with benzyl alcohols, N, N'-(phenylmethylene)dibenzamide products were unexpectedly isolated under non-coordinating anion conditions, whereas N-benzylbenzamide products were achieved in the absence of non-coordinating anions. The mechanism explorations excluded the possibility of "silver effect" (silver-assisted or bimetallic catalysis) and revealed that the reactivity of iridium catalyst was varied by non-coordinating anions. This work provided a convenient and useful methodology that allowed the iridium complex to be a chemoselective catalyst and demonstrated the first example of non-coordinating-anion-tuned selective C-N bond formation.
  • 加载中
    1. [1]

      (a) H.R. Shaterian, A. Hosseinian, M. Ghashang, Can. J. Chem. 86 (2008) 376-383;
      (b) P. Yang, K.Z. Myint, Q. Tong, et al., J. Med. Chem. 55 (2012) 9973-9987;
      (c) C. Ma, L. Wang, P. Yang, K.Z. Myint, X.Q. Xie, J. Chem. Inf. Model. 53 (2013) 11-26.

    2. [2]

      (a) H.R.Shaterian, M.Ghashang, M.Feyzi, Appl.Catal.AGen.345 (2008)128-133;
      (b) J.W. Bode, Curr. Opin. Drug Discov. Devel. 9 (2006) 765-775;
      (c) M. Rodriguez, P. Dubreuil, J.P. Bali, J. Martinez, J. Med. Chem. 30 (1987) 758-763;
      (d) M.G. Liu, N. Liu, W.H. Xu, L. Wang, Tetrahedron 75 (2019) 2748-2754.

    3. [3]

      (a) G. Kour, M. Gupta, Dalton Trans. 46 (2017) 7039-7050;
      (b) M. Kour, S. Paul, New J. Chem. 39 (2015) 6338-6350;
      (c) B. Maleki, M. Baghayeri, RSC Adv. 5 (2015) 79746-79758;
      (d) R. Tayebee, B. Maleki, F.M. Zonoz, R.M. Kakhki, T. Kunani, RSC Adv. 6 (2016) 20687-20694;
      (e) L. Wang, Y.B. Xie, N.Y. Huang, et al., ACS Catal. 6 (2016) 4010-4016;
      (f) L. Wang, Y.B. Xie, N.Y. Huang, et al., Adv. Synth. Catal. 359 (2017) 779-785;
      (g) N. Liu, F. Chao, M.G. Liu, et al., J. Org. Chem. 84 (2019) 2366-2371.

    4. [4]

      (a) A. Corma, J. Navas, M.J. Sabater, Chem. Rev. 118 (2018) 1410-1459;
      (b) G. Chelucci, Coord. Chem. Rev. 331 (2017) 1-36;
      (c) F. Huang, Z. Liu, Z. Yu, Angew. Chem. Int. Ed. 55 (2016) 862-875;
      (d) Q. Yang, Q. Wang, Z. Yu, Chem. Soc. Rev. 44 (2015) 2305-2329;
      (e) A. Nandakumar, S.P. Midya, V.G. Landge, E. Balaraman, Angew. Chem. Int. Ed. 54 (2015) 11022-11034;
      (f) B. Chen, L. Wang, S. Gao, ACS Catal. 5 (2015) 5851-5876;
      (g) K.I. Shimizu, Catal. Sci. Technol. 5 (2015) 1412-1427;
      (h) Y. Obora, ACS Catal. 4 (2014) 3972-3981;
      (i) D. Hollmann, ChemSusChem 7 (2014) 2411-2413.

    5. [5]

      (a) A.J.A. Watson, J.M.J. Williams, Science 329 (2010) 635-636;
      (b) C. Gunanathan, D. Milstein, Science 341 (2013) 249;
      (c) P. Hu, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 55 (2016) 1061-1064;
      (d) P. Daw, S. Chakraborty, J.A. Garg, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 55 (2016) 14373-14377;
      (e) S. Gowrisankar, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 50 (2011) 5139-5143;
      (f) L. Neubert, D. Michalik, S. Bähn, et al., J. Am. Chem. Soc. 134 (2012) 12239-12244;
      (g) M. Zhang, X. Fang, H. Neumann, M. Beller, J. Am. Chem. Soc. 135 (2013) 11384-11388;
      (h) J. Schranck, A. Tlili, M. Beller, Angew. Chem. Int. Ed. 52 (2013) 7642-7644;
      (i) M. Zhang, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 52 (2013) 597-601;
      (j) C.S. Lim, T.T. Quach, Y. Zhao, Angew. Chem. Int. Ed. 56 (2017) 7176-7180.

    6. [6]

      (a) F.G. Mutti, T. Knaus, N.S. Scrutton, M. Breuer, N.J. Turner, Science 349 (2015) 1525-1529;
      (b) J.R. Frost, C.B. Cheong, W.M. Akhtar, et al., J. Am. Chem. Soc. 137 (2015) 15664-15667;
      (c) N. Deibl, R. Kempe, J. Am. Chem. Soc. 138 (2016) 10786-10789;
      (d) T. Yan, B.L. Feringa, K. Barta, ACS Catal. 6 (2016) 381-388;
      (e) C. Schlepphorst, B. Maji, F. Glorius, ACS Catal. 6 (2016) 4184-4188;
      (f) B. Emayavaramban, M. Roy, B. Sundararaju, Chem. -Eur. J. 22 (2016) 3952-3955;
      (g) D. Shen, D.L. Poole, C.C. Shotton, et al., Angew. Chem. Int. Ed. 54 (2015) 1642-1645;
      (h) F. Jiang, M. Achard, C. Bruneau, Chem. -Eur. J. 21 (2015) 14319-14323;
      (i) M.V. Jimenez, J. Fernandez-Tornos, F.J. Modrego, J.J. Perez-Torrente, L.A. Oro, Chem. -Eur. J. 21 (2015) 17877-17889;
      (j) A.J. Rawlings, L.J. Diorazio, M. Wills, Org. Lett. 17 (2015) 1086-1089;
      (k) T.T. Dang, B. Ramalingam, A.M. Seayad, ACS Catal. 5 (2015) 4082-4088;
      (l) X. Xie, H.V. Huynh, ACS Catal. 5 (2015) 4143-4151;
      (m) H. Hikawa, T. Koike, K. Izumi, S. Kikkawa, I. Azumaya, Adv. Synth. Catal. 358 (2016) 784-791;
      (n) H. Hikawa, R. Ichinose, S. Kikkawa, I. Azumaya, Green Chem. 20 (2018) 1297-1305.

    7. [7]

      (a) B. Xiong, S. Zhang, H. Jiang, M. Zhang, Org. Lett. 18 (2016) 724-727;
      (b) Z. Tan, H. Jiang, M. Zhang, Org. Lett. 18 (2016) 3174-3177;
      (c) B. Xiong, S.D. Zhang, L. Chen, et al., Chem. Commun. 52 (2016) 10636-10639;
      (d) Z. Tan, H. Jiang, M. Zhang, Chem. Commun. 52 (2016) 9359-9362;
      (e) F. Xie, R. Xie, J.X. Zhang, et al., ACS Catal. 7 (2017) 4780-4785;
      (f) H.J. Pan, T.W. Ng, Y. Zhao, Chem. Commun. 51 (2015) 11907-11910;
      (g) Z.Q. Rong, Y. Zhang, R.H.B. Chua, H.J. Pan, Y. Zhao, J. Am. Chem. Soc.137 (2015)4944-4947;
      (h) Y. Zhang, C.S. Lim, D.S.B. Sim, H.J. Pan, Y. Zhao, Angew. Chem. Int. Ed. 53 (2014) 1399-1403;
      (i) C.S. Lim, T.T. Quach, Y. Zhao, Angew. Chem. Int. Ed. 56 (2017) 7176-7180;
      (j) X. Chen, H. Zhao, C. Chen, H. Jiang, M. Zhang, Angew. Chem. Int. Ed. 56 (2017) 14232-14326.

    8. [8]

      (a) F. Li, L. Lu, P. Liu, Org. Lett. 18 (2016) 2580-2583;
      (b) R. Wang, H. Fan, W. Zhao, F. Li, Org. Lett. 18 (2016) 3558-3561;
      (c) S.Y. Li, X.H. Li, Q. Li, et al., Green Chem. 17 (2015) 3260-3265;
      (d) Q. Xu, J. Chen, H. Tian, et al., Angew. Chem. Int. Ed. 53 (2014) 225-229;
      (e) X. Cui, X. Dai, Y. Deng, F. Shi, Chem. -Eur. J. 19 (2013) 3665-3675;
      (f) Q. Wang, K. Wu, Z. Yu, Organometallics 35 (2016) 1251-1256;
      (g) T. Liu, L. Wang, K. Wu, Z. Yu, ACS Catal. 8 (2018) 7201-7207.

    9. [9]

      (a) C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 47 (2008) 8661-8664;
      (b) F. Shi, M.K. Tse, X.J. Cui, et al., Angew. Chem. Int. Ed. 48 (2009) 5912-5915;
      (c) B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 49 (2010) 1468-1471;
      (d) Y. Zhao, S.W. Foo, S. Saito, Angew. Chem. Int. Ed. 50 (2011) 3006-3009;
      (e) S. Gowrisankar, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 50 (2011) 5139-5143;
      (f)L.Neubert, D.Michalik, S.Bähn, etal., J.Am.Chem.Soc.134 (2012)12239-12244;
      (g) T. Yan, B.L.T. Feringa, K. Barta, Nat. Commun. 5 (2014) 5602-560;
      (h) T. Yan, B.L. Feringa, K. Barta, ACS Catal. 6 (2016) 381-388;
      (i) P. Hu, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 55 (2016) 1061-1064;
      (j) N. Deibl, R. Kempe, J. Am. Chem. Soc. 138 (2016) 10786-10789.

    10. [10]

      (a) X. Cui, Y. Zhang, F. Shi, Y. Deng, Chem. -Eur. J. 17 (2011) 1021-1028;
      (b) Q. Xu, H.M. Xie, E.L. Zhang, et al., Green Chem. 18 (2016) 3940-3944;
      (c) S. Kerdphon, X. Quan, V.S. Parihar, P.G. Andersson, J. Org. Chem. 80 (2015) 11529-11537;
      (d) J. Das, D. Banerjee, J. Org. Chem. 83 (2018) 3378-3384;
      (e) G.C.Y. Choo, H. Miyamura, S. Kobayashi, Chem. Sci. 6 (2015) 1719-1727.

    11. [11]

      (a) D. Wang, K. Zhao, C. Xu, H. Miao, Y. Ding, ACS Catal. 4 (2014) 3910-3918;
      (b) Y. Yang, A. Qin, K. Zhao, D. Wang, X. Shi, Adv. Synth. Catal. 358 (2016) 1433-1439;
      (c) Z. Xu, D.S. Wang, X. Yu, Y. Yang, D. Wang, Adv. Synth. Catal. 359 (2017) 3332-3340;
      (d) Q. Wu, L. Pan, G. Du, C. Zhang, D. Wang, Org. Chem. Front. 5 (2018) 2668-2675;
      (e) R. Huang, Y. Yang, D.S. Wang, L. Zhang, D. Wang, Org. Chem. Front. 5 (2018) 203-209;
      (f) C. Ge, X. Sang, W. Yao, L. Zhang, D. Wang, Green Chem. 20 (2018) 1805-1812;
      (g) Z. Xu, X. Yu, X. Sang, D. Wang, Green Chem. 20 (2018) 2571-2577;
      (h) X. Hu, H. Zhu, X. Sang, D. Wang, Adv. Synth. Catal. 360 (2018) 4293-4300;
      (j) D. Ye, R. Huang, H. Zhu, L.H. Zou, D. Wang, Org. Chem. Front. 6 (2019) 62-69;
      (j.) D. Ye, L. Pan, H. Zhu, et al., Mater.Chem. Front. 3 (2019) 216-223.

    12. [12]

      D. Wang, R. Cai, S. Sharma, et al., J. Am. Chem. Soc. 134 (2012) 9012-9019.  doi: 10.1021/ja303862z

    13. [13]

      (a) D. Wang, X. Yu, X. Xu, et al., Chem. -Eur. J. 22 (2016) 8663-8668;
      (b) X. Yu, D.S. Wang, Z. Xu, B. Yang, D. Wang, Org. Chem. Front. 4 (2017) 1011-1018;
      (c) X. Yu, W. Yao, H. Wan, Z. Xu, D. Wang, J. Organomet. Chem. 822 (2016) 100-103.

  • 加载中
    1. [1]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    2. [2]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    5. [5]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    6. [6]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    7. [7]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    8. [8]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    9. [9]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    10. [10]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    11. [11]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    12. [12]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    13. [13]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    14. [14]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    15. [15]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    16. [16]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    17. [17]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    18. [18]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    19. [19]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    20. [20]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

Metrics
  • PDF Downloads(4)
  • Abstract views(832)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return