Citation: Wu Zhen, Feng Xue-Xin, Wang Qing-Dong, Liu Xuan-Yu, Rao Weidong, Yang Jin-Ming, Shen Zhi-Liang. An efficient Bi/NH4I-mediated addition reaction for the highly diastereoselective synthesis of homoallylic alcohols in aqueous media[J]. Chinese Chemical Letters, ;2020, 31(2): 391-395. doi: 10.1016/j.cclet.2019.07.030 shu

An efficient Bi/NH4I-mediated addition reaction for the highly diastereoselective synthesis of homoallylic alcohols in aqueous media

    * Corresponding authors at: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
    E-mail addresses: yangjm@yctu.edu.cn (J.-M. Yang), ias_zlshen@njtech.edu.cn (Z.-L. Shen).
  • Received Date: 29 May 2019
    Revised Date: 11 July 2019
    Accepted Date: 11 July 2019
    Available Online: 12 July 2019

Figures(6)

  • An efficient water-based bismuth-mediated addition reaction of carbonyl compound with cyclic allylic halide was developed. The reactions proceeded smoothly in aqueous DMF in the presence of ammonium iodide to afford the corresponding syn-homoallylic alcohols in moderate to good yields with excellent diastereoselectivities (>99:1 syn:anti). Reversal of product diastereoselectivity was observed when heteroaryl aldehyde possessing an adjacent chelating nitrogen atom was employed as substrate.
  • 加载中
    1. [1]

      (a) Z.L. Shen, S.Y. Wang, Y.K. Chok, Y.H. Xu, T.P. Loh, Chem. Rev. 113 (2013) 271-401;
      (b) T.P. Loh, G.L. Chua, Chem. Commun. (2006) 2739-2749;
      (c) U.K. Roy, S. Roy, Chem. Rev. 110 (2010) 2472-2535;
      (d) M. Yus, J.C. Gonzalez-Gomez, F. Foubelo, Chem. Rev. 111 (2011) 7774-7854;
      (e) S.E. Denmark, J. Fu, Chem. Rev. 103 (2003) 2763-2794;
      (f) D. Kumar, S.R. Vemula, N. Balasubramanian, G.R. Cook, Acc. Chem. Res. 49 (2016) 2169-2178.

    2. [2]

      (a) S. Araki, H. Ito, Y. Butsugan, J. Org. Chem. 53 (1988) 1831-1833;
      (b) C.J. Li, D.L. Chen, Y.Q. Lu, J.X. Haberman, J.T. Mague, J. Am. Chem. Soc. 118 (1996) 4216-4217;
      (c) L.A. Paquette, T.M. Mitzel, J. Am. Chem. Soc. 118 (1996) 1931-1937;
      (d) T.P. Loh, X.R. Li, Angew. Chem. Int. Ed. 36 (1997) 980-982;
      (e) T.P. Loh, K.T. Tan, S.S. Chng, H.S. Cheng, J. Am. Chem. Soc. 125 (2003) 2958-2963;
      (f) T.H. Chan, Y. Yang, J. Am. Chem. Soc. 121 (1999) 3228-3229;
      (g) S.A. Babu, M. Yasuda, A. Baba, J. Org. Chem. 72 (2007) 10264-10267;
      (h) K. Lee, H. Kim, T. Miura, et al., J. Am. Chem. Soc. 125 (2003) 9682-9688;
      (i) L.A. Paquette, P.C. Lobben, J. Am. Chem. Soc. 118 (1996) 1917-1930;
      (j) G. Hilt, K.I. Smolko, Angew. Chem. Int. Ed. 40 (2001) 3399-3402;
      (k) J.M. Huang, X.X. Wang, Y. Dong, Angew. Chem. Int. Ed. 50 (2011) 924-927;
      (l) H.T. Ji, Q.S. Tian, J.N. Xiang, G.Z. Zhang, Chin. Chem. Lett. 28 (2017) 1182-1184;
      (m) Z.J. Bao, J. Lu, S.J. Ji, Chin. Chem. Lett. 18 (2007) 1061-1063.

    3. [3]

      H. Ren, G. Dunet, P. Mayer, P. Knochel, J. Am. Chem. Soc.129 (2007) 5376-5377.  doi: 10.1021/ja071380s

    4. [4]

      (a) Z. Peng, T.D. Blumke, P. Mayer, P. Knochel, Angew. Chem. Int. Ed. 49 (2010) 8516-8519;
      (b) Z.L. Shen, Z. Peng, C.M. Yang, et al., Org. Lett. 16 (2014) 956-959.

    5. [5]

      F.A. Khan, B. Prabhudas, Tetrahedron 56 (2000) 7595-7599.  doi: 10.1016/S0040-4020(00)00672-4

    6. [6]

      (a) X.Y. Liu, B.Q. Cheng, Y.C. Guo, et al., Adv. Synth. Catal. 361 (2019) 542-549;
      (b) X.Y. Liu, B.Q. Cheng, Y.C. Guo, et al., Org. Chem. Front. 6 (2019) 1581-1586.

    7. [7]

      (a) C.J. Li, Chem. Rev. 105 (2005) 3095-3166;
      (b) C.J. Li, Chem. Rev. 93 (1993) 2023-2035;
      (c) C.J. Li, L. Chen, Chem. Soc. Rev. 35 (2006) 68-82;
      (d) D. Dallinger, C.O. Kappe, Chem. Rev. 107 (2007) 2563-2591;
      (e) S. Kobayashi, A.K. Manabe, Acc. Chem. Res. 35 (2002) 209-217;
      (f) U.M. Lindstrom, Chem. Rev. 102 (2002) 2751-2772;
      (g) C.J. Li, Acc. Chem. Res. 35 (2002) 533-538;
      (h) C.I. Herrerías, X.Q. Yao, Z.P. Li, C.J. Li, Chem. Rev. 107 (2007) 2546-2562;
      (i) C.J. Li, Acc. Chem. Res. 43 (2010) 581-590;
      (j) M.O. Simona, C.J. Li, Chem. Soc. Rev. 41 (2012) 1415-1427.

    8. [8]

      (a) R. Zhang, Z.Y. Gu, S.Y. Wang, S.J. Ji, Org. Lett. 20 (2018) 5510-5514;
      (b) B.B. Liu, X.Q. Chu, H. Liu, et al., J. Org. Chem. 82 (2017) 10174-10180;
      (c) X.Q. Chu, X.P. Xu, S.J. Ji, Chem. -Eur. J. 22 (2016) 14181-14185;
      (d) J. Xiao, H. Wen, L. Wang, et al., Green Chem. 18 (2016) 1032-1037;
      (e) S. Zhu, C.Q. Chen, M.Y. Xiao, et al., Green Chem. 19 (2017) 5653-5658;
      (f) P.Z. Xie, J.Y. Wang, Y.N. Liu, et al., Nat. Commun. 9 (2018) 1321;
      (g) L.Y. Xie, S. Peng, F. Liu, et al., ACS Sustain. Chem. Eng. 7 (2019) 7193-7199;
      (h) L.Y. Xie, Y. Duan, L.H. Lu, et al., ACS Sustain. Chem. Eng. 5 (2017) 10407-10412;
      (i) L.Y. Xie, S. Peng, J.X. Tan, et al., ACS Sustain. Chem. Eng. 6 (2018) 16976-16981;
      (j) L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19 (2017) 5642-5646;
      (k) C. Wu, H.J. Xiao, S.W. Wang, et al., ACS Sustain. Chem. Eng. 7 (2019) 2169-2175;
      (l) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (m) Y.L. Lai, J.M. Huang, Org. Lett. 19 (2017) 2022-2025;
      (n) W.B. Wu, J.M. Huang, Org. Lett. 14 (2012) 5832-5835;
      (o) J.M. Huang, Z.Q. Lin, D.S. Chen, Org. Lett. 14 (2012) 22-25;
      (p) J.M. Huang, H.R. Ren, Chem. Commun. 46 (2010) 2286-2288;
      (q) X. Liu, S.B. Zhang, H. Zhu, Z.B. Dong, J. Org. Chem. 83 (2018) 11703-11711;
      (r) S.B. Zhang, X. Liu, M.Y. Gao, Z.B. Dong, J. Org. Chem. 83 (2018) 14933-14941;
      (s) Z. Chen, X.X. Shi, D.Q. Ge, et al., Chin. Chem. Lett. 28 (2017) 231-234;
      (t) Q.Q. Xuan, Y.H. Wei, Q.L. Song, Chin. Chem. Lett. 28 (2017) 1163-1166;
      (u) Y. Huo, P. Shen, W. Duan, et al., Chin. Chem. Lett. 29 (2018) 1359-1362;
      (v) H. Zhang, M. Han, C. Yang, L. Yu, Q. Xu, Chin. Chem. Lett. 30 (2019) 263-265;
      (w) H. Xu, Q. Wang, Chin. Chem. Lett. 30 (2019) 337-339;
      (x) J. Gao, Z.G. Ren, J.P. Lang, Chin. Chem. Lett. 28 (2017) 1087-1092;
      (y) H. Wang, Y. Pan, Q. Tang, W. Zou, H. Shao, Chin. Chem. Lett. 29 (2018) 73-75;
      (z) W.H. Bao, M. He, J.T. Wang, et al., J. Org. Chem. 84 (2019) 6065-6071;
      (a') Y.L. Zhan, Y.B. Shen, S.P. Li, B.H. Yue, X.C. Zhou, Chin. Chem. Lett. 28 (2017) 1353-1357;
      (b') K.J. Liu, S. Jiang, L.H. Lu, et al., Green Chem. 19 (2017) 1983-1989.

    9. [9]

      (a) Z.L. Shen, T.P. Loh, Org. Lett. 9 (2007) 5413-5416;
      (b) Z.L. Shen, H.L. Cheong, T.P. Loh, Chem. -Eur. J. 14 (2008) 1875-1880;
      (c) Z.L. Shen, Y.L. Yeo, T.P. Loh, J. Org. Chem. 73 (2008) 3922-3924;
      (d) Y.S. Yang, Z.L. Shen, T.P. Loh, Org. Lett. 11 (2009) 1209-1212;
      (e) Y.S. Yang, Z.L. Shen, T.P. Loh, Org. Lett. 11 (2009) 2213-2215;
      (f) Z.L. Shen, H.L. Cheong, T.P. Loh, Tetrahedron Lett. 50 (2009) 1051-1054;
      (g) Z.L. Shen, S.J. Ji, T.P. Loh, Tetrahedron 64 (2008) 8159-8163;
      (h) J.J. Yun, M.L. Zhi, W.X. Shi, et al., Adv. Synth. Catal. 360 (2018) 2632-2637;
      (i) J.J. Yun, X.Y. Liu, W. Deng, et al., J. Org. Chem. 83 (2018) 10898-10907;
      (j) Z.L. Shen, K.K.K. Goh, H.L. Cheong, et al., J. Am. Chem. Soc.132 (2010) 15852-15855;
      (k) L. Shen, K. Zhao, K. Doitomi, et al., J. Am. Chem. Soc. 139 (2017) 13570-13578.

    10. [10]

      (a) T. Ollevier, Bismuth-Mediated Organic Reactions, Springer, Berlin, Heidelberg, 2012;
      (b) A. Gagnon, J. Dansereau, A. Le Roch, Synthesis 49 (2017) 1707-1745.

    11. [11]

      (a) M. Wada, Ky. Akiba, Tetrahedron Lett. 26 (1985) 4211-4212;
      (b) P.J. Bhuyan, D. Prajapati, J.S. Sandhu, Tetrahedron Lett. 34 (1993) 7975-7976;
      (c) K. Smith, S. Lock, G.A. El-Hiti, M. Wada, N. Miyoshi, Org. Biomol. Chem. 2 (2004) 935-938;
      (d) M. Wada, H. Ohki, Ky. Akiba, Bull. Chem. Soc. Jpn. 63 (1990) 1738-1747.

    12. [12]

      (a) S. Donnelly, E.J. Thomasa, M. Fielding, Tetrahedron Lett. 45 (2004) 6779-6782;
      (b) M. Wada, T. Fukuma, M. Morioka, T. Takahashi, N. Miyoshi, Tetrahedron Lett. 38 (1997) 8045-8048;
      (c) M. Wada, M. Honna, Y. Kuramoto, N. Miyoshi, Bull. Chem. Soc. Jpn. 70 (1997) 2265-2267;
      (d) P.D. Ren, S.F. Pan, T.W. Dong, S.H. Wu, Synth. Commun. 27 (1997) 2569-2576;
      (e) X. Xu, Z. Zha, Q. Miao, Z. Wang, Synlett (2004) 1171-1174.

    13. [13]

      (a) T. Basile, A. Bocoum, D. Savoia, A. Umani-Ronchi, J. Org. Chem. 59 (1994) 7766-7773;
      (b) C. Lichtenberg, F. Pan, T.P. Spaniol, U. Englert, J. Okuda, Angew. Chem. Int. Ed. 51 (2012) 13011-13015.

    14. [14]

      (a) T.D. Blümke, Y.H. Chen, Z. Peng, P. Knochel, Nat. Chem. 2 (2010) 313-318;
      (b) F.M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 47 (2008) 6802-6806;
      (c) Y.H. Chen, P. Knochel, Angew. Chem. Int. Ed. 47 (2008) 7648-7651;
      (d) Z.L. Shen, P. Knochel, ACS Catal. 5 (2015) 2324-2328;
      (e) P.H. Lee, K. Lee, Y. Kang, J. Am. Chem. Soc. 128 (2006) 1139-1146;
      (f) Z.L. Shen, K.K.K. Goh, C.H.A. Wong, et al., Chem. Commun. 47 (2011) 4778-4780;
      (g) S. Bernhardt, Z.L. Shen, P. Knochel, Chem. -Eur. J. 19 (2013) 828-833;
      (h) Z.L. Shen, P. Knochel, Chem. -Eur. J. 21 (2015) 7061-7065;
      (i) G.J. Wang, Z.Q. Fu, W. Huang, Org. Lett. 19 (2017) 3362-3365;
      (j) Y.R. Gao, Y.F. Ma, C. Xu, et al., Adv. Synth. Catal. 360 (2018) 479-484;
      (k) Y.R. Gao, D.H. Liu, Z.Q. Fu, W. Huang, Org. Lett. 21 (2019) 926-930;
      (l) B.Q. Cheng, S.W. Zhao, X.D. Song, et al., J. Org. Chem. 84 (2019) 5348-5356;
      (m) Y. Chen, L. Liu, D. Wu, Y.P. He, A. Li, Chin. Chem. Lett. 30 (2019) 269-270.

    15. [15]

      B.Z. Chen, M.L. Zhi, C.X. Wang, et al., Org. Lett. 20 (2018) 1902-1905.  doi: 10.1021/acs.orglett.8b00441

    16. [16]

      (a) R. Lorpitthaya, S.B. Suryawanshi, S. Wang, et al., Angew. Chem. Int. Ed. 50 (2011) 12054-12057;
      (b) P.H. Lee, S. Kim, K. Lee, et al., Org. Lett. 6 (2004) 4825-4828.

    17. [17]

      (a) B. Alcaide, P. Almendros, C. Aragoncillo, R. Rodriguez-Acebes, J. Org. Chem. 66 (2001) 5208-5216;
      (b) S.N. Murthy, Y.V.D. Nageswar, Synthesis (2011) 755-758.

    18. [18]

      (a) L. Niu, H. Yang, D. Yang, H. Fu, Adv. Synth. Catal. 354 (2012) 2211-2217;
      (b) J. Wang, S. Lu, X. Cao, H. Gu, Chem. Commun. 50 (2014) 5637-5640;
      (c) M.X. Bi, P. Qian, Y.K. Wang, Z.G. Zha, Z.Y. Wang, Chin. Chem. Lett. 28 (2017) 1159-1162.

    19. [19]

      (a) Q. Jiang, B. Xu, A. Zhao, J. Jia, T. Liu, C. Guo, J. Org. Chem. 79 (2014) 8750-8756;
      (b) W. Zhao, P. Xie, Z. Bian, et al., J. Org. Chem. 80 (2015) 9167-9175;
      (c) X. Gao, X. Pan, J. Gao, H. Huang, G. Yuan, Y. Li, Chem. Commun. 51 (2015) 210-212;
      (d) X. Gao, H. Yang, C. Cheng, et al., Green Chem. 20 (2018) 2225-2230;
      (e) Q.Y. Li, T.R. Swaroop, C. Hou, et al., Adv. Synth. Catal. 361 (2019) 1761-1765.

  • 加载中
    1. [1]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    5. [5]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    6. [6]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    9. [9]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    14. [14]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    15. [15]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    16. [16]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    17. [17]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    18. [18]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    19. [19]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    20. [20]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

Metrics
  • PDF Downloads(4)
  • Abstract views(910)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return