Citation: Hua Ting-Bi, Xiao Cong, Yang Qing-Qing, Chen Jia-Rong. Recent advances in asymmetric synthesis of 2-substituted indoline derivatives[J]. Chinese Chemical Letters, ;2020, 31(2): 311-323. doi: 10.1016/j.cclet.2019.07.015 shu

Recent advances in asymmetric synthesis of 2-substituted indoline derivatives

    * Corresponding authors.
    E-mail addresses: qingqing_yang@ctgu.edu.cn (Q.-Q. Yang), chenjiarong@mail.ccnu.edu.cn (J.-R. Chen).
    1 These authors contributed equally to this work.
  • Received Date: 20 April 2019
    Revised Date: 26 June 2019
    Accepted Date: 5 July 2019
    Available Online: 5 July 2019

Figures(43)

  • Enantiomerically pure 2-substituted indolines are an important class of nitrogen heterocycles that occur frequently in many alkaloid natural products and biologically active compounds. Consequently, the synthesis of such skeletons is of great significance. The past years have witnessed a number of remarkable advances in the development of efficient strategies to construct this class of chiral compounds. This review summarizes the recent advances in asymmetric synthesis of 2-substituted indoline derivatives. Due to the limitation of the length, this review only summarizes those works published from January of 2012 to January of 2019. Meanwhile, methods towards synthesis of fused and spirocyclic indolines will not be discussed in this review.
  • 加载中
    1. [1]

      (a) J. Dunlop, K.L. Marquis, H.K. Lim, et al., CNS Drug Rev. 12 (2006) 167-177;
      (b) D. Crich, A. Banerjee, Acc. Chem. Res. 40 (2007) 151-161;
      (c) D. Zhang, H. Song, Y. Qin, Acc. Chem. Res. 44 (2011) 447-457.

    2. [2]

      F. Andersson, E. Hedenström, Tetrahedron: Asymmetry 17 (2006) 1952-1957.  doi: 10.1016/j.tetasy.2006.07.002

    3. [3]

      R. Neelamegam, T. Hellenbrand, F.A. Schroeder, et al., J. Med. Chem. 57 (2014) 1488-1494.  doi: 10.1021/jm401802f

    4. [4]

      (a) L. Xiang, D. Xing, W. Wang, et al., Phytochemistry 66 (2005) 2595-2601;
      (b) W.G. Kim, J.P. Kim, H. Koshino, et al., Tetrahedron 53 (1997) 4309-4316;
      (c) A. Rakhit, M.E. Hurley, V. Tipnis, et al., J.Clin. Pharmacol. 26 (1986) 156-164;
      (d) S. Adachi, K. Koike, I. Takayanagi, Pharmacology 53 (1996) 250-258;
      (e) V. Certal, J.C. Carry, F. Halley, et al., J. Med. Chem. 57 (2014) 903-920;
      (f) J. Bermudez, S. Dabbs, K.A. Joiner, et al., J. Med. Chem. 33 (1990) 1929-1932.

    5. [5]

      (a) S. Anas, H.B. Kagan, Tetrahedron: Asymmetry 20 (2009) 2193-2199;
      (b) D. Liu, G. Zhao, L. Xiang, Eur. J. Org. Chem. 2010 (2010) 3975-3984;
      (c) B. Zhang, W. Qin, Y. Duan, et al., Chin. J. Org. Chem. 32 (2012) 1359-1367.

    6. [6]

      (a) F.F. Huerta, A.B.E. Minidis, J.E. Bäckvall, Chem. Soc. Rev. 30 (2001) 321-331;
      (b) E. Vedejs, M. Jure, Angew. Chem. Int. Ed. 44 (2005) 3974-4001;
      (c) E. Fogassy, M. Nógrádi, D. Kozma, et al., Org. Biomol. Chem. 4 (2006) 3011-3030;
      (d) H. Pellissier, Adv. Synth. Catal. 353 (2011) 1613-1666;
      (e) V.P. Krasnov, D.A. Gruzdev, G.L. Levit, Eur. J. Org. Chem. 2012 (2012) 1471-1493.

    7. [7]

      M. Breuer, K. Ditrich, T. Habicher, et al., Angew. Chem. Int. Ed. 43 (2004) 788-824.  doi: 10.1002/anie.200300599

    8. [8]

      M. López-Iglesias, E. Busto, V. Gotor-Fernández, et al., J. Org. Chem. 77 (2012) 8049-8055.  doi: 10.1021/jo301307q

    9. [9]

      (a) I. Čorić, S. Müeller, B. List, J. Am. Chem. Soc. 132 (2010) 17370-17373;
      (b) I. Čorić, B. List, Nature 483 (2012) 315-319;
      (c) I. Čorić, J.H. Kim, T. Vlaar, et al., Angew. Chem. Int. Ed. 52 (2013) 3490-3493;
      (d) J.H. Kim, I. Čorić, B. List, et al., J. Am. Chem. Soc. 137 (2015) 1778-1781.

    10. [10]

      (a) K. Saito, M. Yamanaka, T. Akiyama, et al., J. Am. Chem. Soc. 135 (2013) 11740-11743;
      (b) K. Saito, T. Akiyama, Angew. Chem. Int. Ed. 55 (2016) 3148-3152.

    11. [11]

      Y. Wang, G. Li, G. Zhao, et al., Tetrahedron Lett. 58 (2017) 2993-2996.  doi: 10.1016/j.tetlet.2017.06.057

    12. [12]

      J.I. Murray, N.J. Flodén, A.C. Spivey, et al., Angew. Chem. Int. Ed. 56 (2017) 5760-5764.  doi: 10.1002/anie.201700977

    13. [13]

      W. Yang, Y. Zeng, Q. Cai, et al., Org. Lett. 15 (2013) 3598-3601.  doi: 10.1021/ol401449b

    14. [14]

      Z. Yang, F. Chen, Q.H. Fan, et al., Angew. Chem. Int. Ed. 55 (2016) 13863-13866.  doi: 10.1002/anie.201607890

    15. [15]

      Z. Luo, L. Zhang, Z. Wang, et al., Chem. Commun. 54 (2018) 13503-13506.  doi: 10.1039/C8CC07336H

    16. [16]

      Q.A. Chen, Z.S. Ye, Y.G. Zhou, et al., Chem. Soc. Rev. 42 (2013) 497-511.  doi: 10.1039/C2CS35333D

    17. [17]

      Y. Duan, C.B. Yu, Y.G. Zhou, et al., Org. Biomol. Chem. 10 (2012) 1235-1238.  doi: 10.1039/C1OB06777J

    18. [18]

      Y. Duan, H.-J. Fan, Y.-G. Zhou, et al., J. Am. Chem. Soc. 136 (2014) 7688-7700.  doi: 10.1021/ja502020b

    19. [19]

      D.Y. Zhang, C.B. Yu, Y.G. Zhou, et al., Tetrahedron Lett. 53 (2012) 2556-2559.  doi: 10.1016/j.tetlet.2012.03.036

    20. [20]

      C. Li, Y. Liu, W. Zhang, et al., Tetrahedron 69 (2013) 6839-6844.  doi: 10.1016/j.tet.2013.06.016

    21. [21]

      C.B. Yu, J. Wang, Y.G. Zhou, Org. Chem. Front. 5 (2018) 2805-2809.  doi: 10.1039/C8QO00710A

    22. [22]

      J. Wen, L.W. Chung, Zhang X, et al., Org. Lett. 20 (2018) 2143-2147.  doi: 10.1021/acs.orglett.8b00312

    23. [23]

      J.L. Núñez-Rico, H. Fernández-Pérez, A. Vidal-Ferran, Green Chem. 16 (2014) 1153-1157.  doi: 10.1039/c3gc42132e

    24. [24]

      (a) S.E. Lyubimov, D.V. Ozolin, V.A. Davankov, Tetrahedron Lett. 55 (2014) 3613-3614;
      (b) D.V. Ozolin, S.E. Lyubimov, V.A. Davankov, Russ. Chem. Bull. 63 (2014) 2399-2401.

    25. [25]

      (a) D.S. Wang, Q.A. Chen, Y.G. Zhou, et al., Chem. Rev. 112 (2012) 2557-2590;
      (b) Z. Wu, M. Perez, V. Ratovelomanana-Vidal, et al., Angew. Chem. Int. Ed. 52 (2013) 4925-4928;
      (c) A. Bartoszewicz, N. Ahlsten, B. Martin-Matute, Chem. -Eur. J. 19 (2013) 7274-7302.

    26. [26]

      A.M. Kluwer, A.M. van der Burg, J.N.H. Reek, et al., Adv. Synth. Catal. 354 (2012) 89-95.  doi: 10.1002/adsc.201100422

    27. [27]

      R. Borrmann, N. Knop, M. Rueping, Chem. -Eur. J. 23 (2017) 798-801.  doi: 10.1002/chem.201605450

    28. [28]

      T. Touge, T. Arai, J. Am. Chem. Soc. 138 (2016) 11299-11305.  doi: 10.1021/jacs.6b06295

    29. [29]

      Q. Shi, Z. Chen, J. Hu, Curr. Org. Chem. 22 (2018) 557-580.  doi: 10.2174/1385272822666171227145613

    30. [30]

      L. Chen, C. Wang, J. Sun, et al., Adv. Synth. Catal. 356 (2014) 2224-2230.  doi: 10.1002/adsc.201301133

    31. [31]

      (a) M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 48 (2009) 9608-9644;
      (b) C.X. Zhuo, W. Zhang, S.L. You, Angew. Chem. Int. Ed. 51 (2012) 12662-12686;
      (c) Q. Ding, X. Zhou, R. Fan, Org. Biomol. Chem. 12 (2014) 4807-4815;
      (d) C.X. Zhuo, C. Zheng, S.L. You, Acc. Chem. Res. 47 (2014) 2558-2573;
      (e) C. Zheng, S.L. You, Chem. 1 (2016) 830-857.

    32. [32]

      (a) K. Kubota, K. Hayama, H. Ito, et al., Angew. Chem. Int. Ed. 54 (2015) 8809-8813;
      (b) K. Hayama, K. Kubota, H. Ito, et al., Chem. Lett. 46 (2017) 1800-1802.

    33. [33]

      L. Chen, J.J. Shen, S. Xu, et al., Chem. Sci. 9 (2018) 5855-5859.  doi: 10.1039/C8SC01815D

    34. [34]

      Y. Shi, Q. Gao, S. Xu, J. Org. Chem. 83 (2018) 14758-14767.  doi: 10.1021/acs.joc.8b02308

    35. [35]

      S. Panda, J.M. Ready, J. Am. Chem. Soc. 139 (2017) 6038-6041.  doi: 10.1021/jacs.7b01410

    36. [36]

      S. Panda, J.M. Ready, J. Am. Chem. Soc. 140 (2018) 13242-13252.  doi: 10.1021/jacs.8b06629

    37. [37]

      Y.D. Shao, S.K. Tian, Chem. Commun. 48 (2012) 4899-4901.  doi: 10.1039/c2cc31001e

    38. [38]

      D.J. Cheng, S.K. Tian, Adv. Synth. Catal. 355 (2013) 1715-1718.  doi: 10.1002/adsc.201300161

    39. [39]

      Q.Q. Yang, L.Q. Lu, W.J. Xiao, et al., Chem. -Eur. J. 19 (2013) 8401-8404.  doi: 10.1002/chem.201300988

    40. [40]

      (a) J.R. Chen, L.Q. Lu, W.J. Xiao, et al., Chem. Rev. 115 (2015) 5301-5365;
      (b) Q.Q. Yang, W.J. Xiao, Eur. J. Org. Chem. 2017 (2017) 233-236.

    41. [41]

      R.D. Aher, G.M. Suryavanshi, A. Sudalai, J. Org. Chem. 82 (2017) 5940-5946.  doi: 10.1021/acs.joc.7b00439

    42. [42]

      T. Ikawa, Y. Sumii, S. Akai, et al., Synlett 29 (2018) 530-536.  doi: 10.1055/s-0036-1591722

    43. [43]

      Q. Zhang, C. Song, J. Chang, et al., Chin. J. Org. Chem. 38 (2018) 221-227.  doi: 10.6023/cjoc201708002

    44. [44]

      (a) A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH: Meinheim, 2004;
      (b) P.I. Dalko, Enantioselective Organocatalysis, Wiley-VCH: Weinheim, 2007;
      (c) B. List, Chem. Rev. 107 (2007) 5413-5415;
      (d) D.W.C. MacMillan, Nature 455 (2008) 304-308;
      (e) L.S. Hegedus, J. Am. Chem. Soc. 131 (2009) 17995-17997;
      (f) A. Moyano, R. Rios, Chem. Rev. 8 (2011) 4703-4832.

    45. [45]

      R. Miyaji, K. Asano, S. Matsubara, Org. Lett. 15 (2013) 3658-3661.  doi: 10.1021/ol401538b

    46. [46]

      J. Lee, K.M. Ko, S.G. Kim, RSC Adv. 7 (2017) 56457-56462.  doi: 10.1039/C7RA10775G

    47. [47]

      (a) A. Castellanos, S.P. Fletcher, Chem. -Eur. J. 17 (2011) 5766-5776;
      (b) S.E. Denmark, W.E. Kuester, M.T. Burk, Angew. Chem. Int. Ed. 51 (2012) 10938-10953;
      (c) U. Hennecke, Chem. -Eur. J. 7 (2012) 456-465;
      (d) C.K. Tan, Y.Y. Yeung, Chem. Commun. 49 (2013) 7985-7996;
      (e) K. Murai, H. Fujioka, Heterocycles 87 (2013) 763-805;
      (f) Y.A. Cheng, W.Z. Yu, Y.Y. Yeung, Org. Biomol. Chem. 12 (2014) 2333-2343.

    48. [48]

      P. Mizar, A. Burrelli, T. Wirth, et al., Chem. -Eur. J. 20 (2014) 13113-13116.  doi: 10.1002/chem.201404762

    49. [49]

      S.N. Yu, Y.L. Li, J. Deng, Adv. Synth. Catal. 359 (2017) 2499-2508.  doi: 10.1002/adsc.201700106

    50. [50]

      (a) M.C. Paderes, J.B. Keister, S.R. Chemler, J. Org. Chem. 78 (2013) 506-515;
      (b) F.C. Sequeira, M.T. Bovino, S.R. Chemler, et al., Synthesis 44 (2012) 1481-1484;
      (c) T.W. Liwosz, S.R. Chemler, J. Am. Chem. Soc. 134 (2012) 2020-2023;
      (d) M.T. Bovino, S.R. Chemler, Angew. Chem. Int. Ed. 51 (2012) 3923-3927;
      (e) B.W. Turnpenny, K.L. Hyman, S.R. Chemler, Organometallics 31 (2012) 7819-7822;
      (f) B.W. Turnpenny, S.R. Chemler, Chem. Sci. 5 (2014) 1786-1793.

    51. [51]

      (a) R. Jazzar, J. Hitce, O. Baudoin, et al., Chem. -Eur. J. 16 (2010) 2654-2672;
      (b) O. Baudoin, Chem. Soc. Rev. 40 (2011) 4902-4912;
      (c) H. Li, B.J. Li, Z.J. Shi, Catal. Sci. Technol. 1 (2011) 191-206;
      (d) N. Dastbaravardeh, M. Christakakou, M. Schnürch, et al., Synthesis 46 (2014) 1421-1439;
      (e) J.F. Hartwig, J. Am. Chem. Soc. 138 (2016) 2-24.

    52. [52]

      T. Saget, S.J. Lemouzy, N. Cramer, Angew. Chem. Int. Ed. 51 (2012) 2238-2242.  doi: 10.1002/anie.201108511

    53. [53]

      D. Katayev, M. Nakanishi, E.P. Kündig, et al., Chem. Sci. 3 (2012) 1422-1425.  doi: 10.1039/c2sc20111a

    54. [54]

      E. Larionov, M. Nakanishi, E.P. Kündig, et al., Chem. Sci. 4 (2013) 1995-2005.  doi: 10.1039/c3sc00098b

    55. [55]

      D. Katayev, E. Larionov, E.P. Kündig, et al., Chem. -Eur. J. 20 (2014) 15021-15030.  doi: 10.1002/chem.201403985

    56. [56]

      S. Zhang, J. Lu, W.L. Duan, et al., Chin. J. Org. Chem. 36 (2016) 752-759.  doi: 10.6023/cjoc201602032

    57. [57]

      L. Yang, R. Melot, O. Baudoin, et al., Chem. Sci. 8 (2017) 1344-1349.  doi: 10.1039/C6SC04006C

    58. [58]

      T.R. Li, W.J. Xiao, L.Q. Lu, et al., Tetrahedron Lett. 59 (2018) 1521-1530.  doi: 10.1016/j.tetlet.2018.02.081

    59. [59]

      T.R. Li, F. Tan, W.J. Xiao, et al., Nat. Commun. 5 (2014) 5500-5509.  doi: 10.1038/ncomms6500

    60. [60]

      Y.N. Wang, L.Q. Lu, W.J. Xiao, et al., Org. Lett. 19 (2017) 4094-4097.  doi: 10.1021/acs.orglett.7b01794

    61. [61]

      Q. Wang, L.Q. Lu, W.J. Xiao, et al., J. Am. Chem. Soc. 138 (2016) 8360-8363.  doi: 10.1021/jacs.6b04414

    62. [62]

      E. Ascic, S.L. Buchwald, J. Am. Chem. Soc. 137 (2015) 4666-4669.  doi: 10.1021/jacs.5b02316

    63. [63]

      D. Li, J. Kim, J. Yun, et al., Chem. Asian J. 13 (2018) 2365-2368.  doi: 10.1002/asia.201800121

    64. [64]

      G. Zhang, Xiong T, Q. Zhang, et al., Org. Lett. 20 (2018) 1798-1801.  doi: 10.1021/acs.orglett.8b00246

    65. [65]

      (a) H.M.L. Davies, R.E.J. Beckwith, Chem. Rev. 103 (2003) 2861-2903;
      (b) H.M.L. Davies, D. Morton, Chem. Soc. Rev. 40 (2011) 1857-1869;
      (c) M.P. Doyle, R. Duffy, L. Zhou, et al., Chem. Rev. 110 (2010) 704-724;
      (d) M.P. Doyle, M. Ratnikov, Y. Liu, Org. Biomol. Chem. 9 (2011) 4007-4016;
      (e) S. Zhu, D. Zhu, L. Chen, et al., Angew. Chem. Int. Ed. 57 (2018) 12405-12409.

    66. [66]

      G. Maas, Angew. Chem. Int. Ed. 48 (2009) 8186-8195.  doi: 10.1002/anie.200902785

    67. [67]

      B. Xu, S.F. Zhu, Q.L. Zhou, et al., Angew. Chem. Int. Ed. 53 (2014) 3913-3916.  doi: 10.1002/anie.201400236

    68. [68]

      L. Jiang, R. Xu, W. Hu, et al., J. Org. Chem. 79 (2014) 8440-8446.  doi: 10.1021/jo501282h

    69. [69]

      J. Yang, X. Liu, X. Feng, et al., Org. Lett. 20 (2018) 4536-4539.  doi: 10.1021/acs.orglett.8b01744

    70. [70]

      M. Santi, S.T.R. Müller, T. Wirth, et al., Eur. J. Org. Chem. 2017 (2017) 1889-1893.  doi: 10.1002/ejoc.201700412

    71. [71]

      K. Dong, M.P. Doyle, X. Xu, et al., ACS Catal. 8 (2018) 9543-9549.  doi: 10.1021/acscatal.8b02822

    72. [72]

      L.W. Souza, R.A. Squitieri, J.T. Shaw, et al., Angew. Chem. Int. Ed. 57 (2018) 15213-15216.  doi: 10.1002/anie.201809344

    73. [73]

      D. Zhu, L. Zhang, S. Zhu, et al., Angew. Chem. Int. Ed. 55 (2016) 8452-8456.  doi: 10.1002/anie.201604211

    74. [74]

      (a) M.P. Doyle, Angew. Chem. Int. Ed. 48 (2009) 850-852;
      (b) H. Lu, X.P. Zhang, Chem. Soc. Rev. 40 (2011) 1899-1909;
      (c) H. Pellissier, H. Clavier, Chem. Rev. 114 (2014) 2775-2823;
      (d) A. Studer, D.P. Curran, Angew. Chem. Int. Ed. 55 (2016) 58-102;
      (e) H. Miyabe, A. Kawashima, S. Kohtani, et al., Chem. -Eur. J. 23 (2017) 6225-6236.

    75. [75]

      X. Wen, Y. Wang, X.P. Zhang, Chem. Sci. 9 (2018) 5082-5086.  doi: 10.1039/C8SC01476K

    76. [76]

      (a) S.V. Ley, A.W. Thomas, Angew. Chem. Int. Ed. 42 (2003) 5400-5449;
      (b) I.P. Beletskaya, A.V. Cheprakov, Coord. Chem. Rev. 248 (2004) 2337-2364;
      (c) G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 108 (2008) 3054-3131;
      (d) F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 48 (2009) 6954-6971;
      (e) D. Ma, Q. Cai, Acc. Chem. Soc. 41 (2008) 1450-1460;
      (f) D.S. Surry, S.L. Buchwald, Chem. Sci. 1 (2010) 13-31.

    77. [77]

      F. Zhou, J. Liu, Q. Cai, Synlett 27 (2016) 664-675.  doi: 10.1055/s-0035-1560552

    78. [78]

      (a) F. Zhou, J. Guo, Q. Cai, et al., J. Am. Chem. Soc. 134 (2012) 14326-14329;
      (b) J. Liu, J. Yan, Q. Cai, et al., Synthesis 46 (2014) 1917-1923.

  • 加载中
    1. [1]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    2. [2]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    6. [6]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    11. [11]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    12. [12]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    13. [13]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    14. [14]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    15. [15]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    16. [16]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

Metrics
  • PDF Downloads(16)
  • Abstract views(999)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return