Citation: Wang Zhen, Yu Zhenzhen, Yao Yao, Zhang Yakai, Xiao Xuefeng, Wang Bin. A practical synthesis of β-carbolines by tetra-nbutylammonium bromide (TBAB)-mediated cycloaromatization reaction of aldehydes with tryptophan derivatives[J]. Chinese Chemical Letters, ;2019, 30(8): 1541-1544. doi: 10.1016/j.cclet.2019.07.001 shu

A practical synthesis of β-carbolines by tetra-nbutylammonium bromide (TBAB)-mediated cycloaromatization reaction of aldehydes with tryptophan derivatives

    * Corresponding authors.
    E-mail addresses: kai1219@163.com (X. Xiao), , wangbin@nankai.edu.cn (B. Wang)
  • Received Date: 30 May 2019
    Revised Date: 25 June 2019
    Accepted Date: 26 June 2019
    Available Online: 2 August 2019

Figures(3)

  • A mild and efficient nBu4NBr-mediated oxidative cycloaromatization to prepare β-carbolines from readily available tryptophans and aldehydes is described. The reaction is practical and allows the synthesis of β-carbolines on gram-scale. Some of products crystallized from the reaction mixture and were easily removed by filtration, obviating the need for chromatographic separation.
  • 加载中
    1. [1]

      (a) R.H. Cao, W.L. Peng, Z.H. Wang, et al., Curr. Med. Chem. 14 (2007) 479-500;
      (b) S. Lancianesi, A. Palmieri, M. Petrini, Chem. Rev. 114 (2014) 7108-7149;
      (c) A.S. Nagle, S. Khare, A.B. Kumar, et al., Chem. Rev. 114 (2014) 11305-11347;
      (d) D. Gema, P.C. Javier, Eur. J. Org. Chem. 2011 (2011) 7243-7253;
      (e) G.J. Zhang, F. Hu, H. Jiang, et al., Phytochemistry 145 (2018) 68-76;
      (f) R.P.O. Venkataramana, M. Hridhay, K. Nikhil, et al., Bioorg. Med. Chem. Lett. 28 (2018) 1278-1282;
      (g) N. Devi, S. Kumar, S.K. Pandey, et al., Asian J. Org. Chem. 7 (2018) 6-36;
      (h) J.G. Luo, L.H. Cao, L.Y. Kong, Chin. Chem. Lett. 23 (2012) 1385-1388;
      (i) Q.Z. Wang, J.Y. Liang, X. Feng, Chin. Chem. Lett. 21 (2010) 596-599.

    2. [2]

      (a) A.G. Shilabin, N. Kasanah, B.L. Tekwani, et al., J. Nat. Prod. 71 (2008) 1218-1221;
      (b) J.D. Winkler, A.T. Londregan, M.T. Hamann, Org. Lett. 8 (2006) 2591-2594.

    3. [3]

      (a) Y. Boursereau, I. Coldham, Bioorg. Med. Chem. Lett. 14 (2004) 5841-5844;
      (b) H. Guan, H. Chen, W. Peng, et al., Eur. J. Med. Chem. 41 (2006) 1167-1179;
      (c) M.A. Rashid, K.R. Gustafson, M.R. Boyd, J. Nat. Prod. 64 (2001) 1454-1456;
      (d) M.R. Prinsep, J.W. Blunt, M.H.G. Munro, J. Nat. Prod. 54 (1991) 1068-1076;
      (e) J.M. Yang, Y.H. Zhu, S. Chen, et al., MedChemComm 9 (2018) 100-107;
      (f) S.U. Dighe, S. Khan, I. Soni, et al., J. Med. Chem. 58 (2015) 3485-3499;
      (g) A. Kamal, V. Srinivasulu, V.L. Nayak, et al., ChemMedChem 9 (2014) 2084-2098;
      (h) Z.G. Li, G.Q. Dong, S.Z. Wang, et al., Chin. Chem. Lett. 26 (2015) 267-271;
      (i) L. Liu, Y.Y. Xu, Z.Q. Yang, et al., Chin. Chem. Lett. 23 (2012) 1230-1232;
      (j) K. Fang, G.Q. Dong, H. Gong, et al., Chin. Chem. Lett. 25 (2014) 978-982.

    4. [4]

      (a) J.G. Tang, Y.H. Wang, R.R. Wang, et al., Chem. Biodivers. 5 (2008) 447-460;
      (b) Y.H. Wang, J.G. Tang, R.R. Wang, et al., Biochem. Biophys. Res. Commun. 355 (2007) 1091-1095;
      (c) X. Yu, W. Lin, J. Li, et al., Bioorg. Med. Chem. Lett. 14 (2004) 3127-3130.

    5. [5]

      (a) T.J. Hagen, P. Skolnick, J.M. Cook, J. Med. Chem. 30 (1987) 750-753;
      (b) W.E. Müller, K.J. Fehske, H.O. Borbe, et al., Pharmacol. Biochem. Behav. 14 (1981) 693-699.

    6. [6]

      (a) Y. Im, J.Y. Lee, Chem. Commun. 49 (2013) 5948-5950;
      (b) B.K. Paul, N. Ghosh, S. Mukherjee, RSC Adv. 6 (2016) 9984-9993;
      (c) S. Swami, D. Behera, A. Agarwala, et al., New J. Chem. (2018) 10317-10326.

    7. [7]

      (a) W.M. Whaley, T.R. Govindachari, The Pictet-Spengler Synthesis of Tetrahydroisoquinolines and Related Compounds, Organic Reactions, John Wiley & Sons, Inc., 2004;
      (b) E.D. Cox, J.M. Cook, Chem. Rev. 95 (1995) 1797-1842;
      (c) R.N. Rao, B. Maiti, K. Chanda, ACS Comb. Sci. 19 (2017) 199-228;
      (d) V. Gobe, V. Gandon, X. Guinchard, Adv. Synth. Catal. 360 (2018) 1280-1288;
      (e) C. Glenn, C.B. Jan, Eur. J. Org. Chem. 2004 (2004) 1286-1297;
      (f) Y.N. Sun, C.L. Wang, N. Zhang, et al., Chin. Chem. Lett. 25 (2014) 1503-1506;
      (g) P.Y. Zhang, S.B. Wan, S.M. Ren, et al., Chin. Chem. Lett. 21 (2010) 1307-1309;
      (h) P.Y. Zhang, J.L. Wang, S.B. Wan, et al., Chin. Chem. Lett. 21 (2010) 889-891.

    8. [8]

      W.M. Whaley, T.R. Govindachari, The Preparation of 3, 4-Dihydroisoquinolines and Related Compounds by the Bischler-Napieralski Reaction, Organic Reactions, John Wiley & Sons, Inc., 2004.

    9. [9]

      (a) D. Singh, P. Sharma, R. Kumar, et al., Asian J. Org. Chem. 7 (2018) 383-394;
      (b) D. Singh, C.K. Hazra, C.C. Malakar, et al., ChemistrySelect 3 (2018) 4859-4864;
      (c) J. Kovvuri, B. Nagaraju, V.L. Nayak, et al., Eur. J. Med. Chem.143 (2018) 1563-1577;
      (d) D. Singh, V. Kumar, N. Devi, et al., Adv. Synth. Catal. 359 (2017) 1213-1226;
      (e) K.L. Manasa, Y. Tangella, G. Ramu, et al., ChemistrySelect 2 (2017) 9162-9167;
      (f) C.E.P. Galvis, V.V. Kouznetsov, Synthesis 49 (2017) 4535-4561;
      (g) S. Hati, S. Sen, Tetrahedron Lett. 57 (2016) 1040-1043;
      (h) R. Meesala, A.S.M. Arshad, M.N. Mordi, et al., Tetrahedron 72 (2016) 8537-8541;
      (i) A. Kamal, Y. Tangella, K.L. Manasa, et al., Org. Biomol. Chem.13 (2015) 8652-8662;
      (j) A. Kamal, M. Sathish, A.V.G. Prasanthi, et al., RSC Adv. 5 (2015) 90121-90126;
      (k) A. Kamal, M.P. Narasimha Rao, P. Swapna, et al., Org. Biomol. Chem. 12 (2014) 2370-2387.

    10. [10]

      (a) S. Ding, Z. Shi, N. Jiao, Org. Lett. 12 (2010) 1540-1543;
      (b) S. Tang, J. Wang, Z. Xiong, et al., Org. Lett. 19 (2017) 5577-5580;
      (c) S.P. Mulcahy, J.G. Varelas, Tetrahedron Lett. 54 (2013) 6599-6601;
      (d) S. Dhara, R. Singha, A. Ahmed, et al., RSC Adv. 4 (2014) 45163-45167;
      (e) Q. Yan, E. Gin, M.G. Banwell, et al., J. Org. Chem. 82 (2017) 4328-4335;
      (f) S. Dhiman, U.K. Mishra, S.S.V. Ramasastry, Angew. Chem. Int. Ed. 55 (2016) 7737-7741;
      (g) X. Pan, T.D. Bannister, Org. Lett. 16 (2014) 6124-6127;
      (h) T.T. Wang, D. Zhang, W.W. Liao, Chem. Commun. 54 (2018) 2048-2051.

    11. [11]

      B.A. Dalvi, P.D. Lokhande, Tetrahedron Lett. 59(2018) 2145-2149.  doi: 10.1016/j.tetlet.2018.01.061

    12. [12]

      F. Nissen, V. Richard, C. Alayrac, et al., Chem. Commun. 47(2011) 6656-6658.  doi: 10.1039/c1cc11298h

    13. [13]

      (a) J.G. Varelas, S. Khanal, M.A. O'Donnell, et al., Org. Lett.17 (2015) 5512-5514;
      (b) N.J. Webb, S.P. Marsden, S.A. Raw, Org. Lett. 16 (2014) 4718-4721.

    14. [14]

      (a) G. Verniest, D.England, N.DeKimpe, et al., Tetrahedron 66 (2010)1496-1502;
      (b) B.V. Subba Reddy, M. Rajashekhar Reddy, S. Yarlagadda, et al., J. Org. Chem. 80 (2015) 8807-8814.

    15. [15]

      P.C. Too, S.H. Chua, S.H. Wong, et al., J. Org. Chem. 76(2011) 6159-6168.  doi: 10.1021/jo200897q

    16. [16]

      Y.P. Zhu, M.C. Liu, Q. Cai, et al., Chem. Eur. J. 19(2013) 10132-10137.  doi: 10.1002/chem.201301734

    17. [17]

      (a) M. Uyanik, K. Ishihara, ChemCatChem 4 (2012) 177-185;
      (b) P. Finkbeiner, B.J. Nachtsheim, Synthesis 45 (2013) 979-999;
      (c) X.F. Wu, J.L. Gong, X.X. Qi, Org. Biomol. Chem. 12 (2014) 5807-5817;
      (d) D. Liu, A.W. Lei, Chem. Asian J. 10 (2015) 806-823.

    18. [18]

      Z. Shi, F. Glorius, Chem. Sci. 4(2013) 829-833.  doi: 10.1039/C2SC21823B

    19. [19]

      H. Rao, X. Ma, Q. Liu, et al., Adv. Synth. Catal. 355(2013) 2191-2196.  doi: 10.1002/adsc.201300488

    20. [20]

      B. Wang, H.N.C. Wong, Bull. Chem. Soc. Jpn. 91(2018) 710-719.  doi: 10.1246/bcsj.20170393

    21. [21]

      (a) Z.Y. Yang, T. Tian, Y.F. Du, et al., Chem. Commun. 53 (2017) 8050-8053;
      (b) H. Wang, Z. Wang, Y.L. Wang, et al., Org. Lett. 19 (2017) 6140-6143;
      (c) T. Lu, Y.T. Jiang, F.P. Ma, et al., Org. Lett. 19 (2017) 6344-6347.

    22. [22]

      W. Wei, C. Zhang, Y. Xu, et al., Chem. Commun. 47(2011) 10827-10829.  doi: 10.1039/c1cc14602e

    23. [23]

      (a) S. Guha, I. Kazi, A. Nandy, et al., Eur. J. Org. Chem. (2017) 5497-5518;
      (b) X. Wang, D. Xu, C. Miao, et al., Org. Biomol. Chem. 12 (2014) 3108-3113.

    24. [24]

      (a) Y. Wei, S. Lin, F. Liang, et al., Org. Lett. 15 (2013) 852-855;
      (b) Y. Wei, F. Liang, X. Zhang, Org. Lett. 15 (2013) 5186-5189.

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    3. [3]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    4. [4]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    5. [5]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    6. [6]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    7. [7]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    10. [10]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    11. [11]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    12. [12]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    13. [13]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    14. [14]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    15. [15]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    16. [16]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    17. [17]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    18. [18]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    19. [19]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    20. [20]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

Metrics
  • PDF Downloads(6)
  • Abstract views(701)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return