Citation: Liu Na, Shi Liangfeng, Han Xianghao, Qi Qiao-Yan, Wu Zong-Quan, Zhao Xin. A heteropore covalent organic framework for adsorptive removal of Cd(Ⅱ) from aqueous solutions with high efficiency[J]. Chinese Chemical Letters, ;2020, 31(2): 386-390. doi: 10.1016/j.cclet.2019.06.050 shu

A heteropore covalent organic framework for adsorptive removal of Cd(Ⅱ) from aqueous solutions with high efficiency

    * Corresponding authors.
    E-mail addresses: zqwu@hfut.edu.cn (Z.-Q. Wu), xzhao@sioc.ac.cn (X. Zhao).
    1 These authors contributed equally to this work.
  • Received Date: 7 May 2019
    Revised Date: 18 June 2019
    Accepted Date: 27 June 2019
    Available Online: 27 June 2019

Figures(5)

  • A heteropore covalent organic framework (COF) integrating tetraphenylethene skeleton and catechol segment is designed and synthesized. It exhibits extremely high stability in water under different pH conditions, which makes it an excellent material for adsorptive removal of Cd(Ⅱ) from aqueous solutions with very fast adsorption kinetics, high uptake capacity, and good recyclability.
  • 加载中
    1. [1]

      (a) R.P. Schwarzenbach, B.I. Escher, K. Fenner, et al., Science 313 (2006) 1072-1077;
      (b) M.P. Waalkes, J. Inorg, Biochem. 79 (2000) 241-244;
      (c) M. Hua, S. Zhang, B. Pan, et al., J. Hazard. Mater. 211-212 (2012) 317-331;
      (d) P. Miretzky, A.F. Cirelli, J. Hazard. Mater. 167 (2009) 10-23;
      (e) M.T. Hayat, M. Nauman, N. Nazir, S.Ali N. Bangash, Environmental hazards of cadmium: past, present, and future, in: M. Hasanuzzaman, M.N.V. Prasad, M. Fujita (Eds.), Cadmium Toxicity and Tolerance in Plants, Academic Press, New York, 2019, pp. 163-183;
      (f) H. Liu, G. Liu, Z. Yuan, et al., Mar. Pollut. Bull. 140 (2019) 388-394;
      (g) P.K. Samantaray, S. Baloda, G. Madras, S. Bose, J. Mater. Chem. A 6 (2018) 16664-16679.

    2. [2]

      (a) H. Yamada, T. Miyahara, Y. Sasaki, Mutat. Res. Lett. 302 (1993) 137-145;
      (b) I.A. Darwish, D.A. Blake, Anal. Chem. 73 (2001) 1889-1895;
      (c) K. Nogawa, E. Kobayashi, Y. Okubo, Y. Suwazono, Biometals 17 (2004) 581-587;
      (d) S. Khan, Q. Cao, Y.M. Zheng, Y.Z. Huang, Y.G. Zhu, Environ. Pollut. 152 (2008) 686-692;
      (e) R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem A 2 (2014) 13932-13941.

    3. [3]

      (a) S. Rodrigues, N. Munichandraiah, A.K. Shukla, J. Power Sources 87 (2000) 12-20;
      (b) S. Ghatak, G. Chakraborty, M. Sinha, S.K. Pradhan, A.K. Meikap, Physica B 406 (2011) 3261-3266.

    4. [4]

      (a) C. Zhu, Y. Guo, Y. Yang, et al., J. Environ. Eng. Technol. 8 (2018) 58-64;
      (b) Y. Lan, R. Liang, X. Zhao, et al., Acta Sci. Circumstantiae 37 (2017) 3602-3612.

    5. [5]

      (a) A. Özverdi, M. Erdem, J. Hazard. Mater. B 137 (2006) 626-632;
      (b) J. Koelmel, M.N.V. Prasad, G. Velvizhi, S.K. Butti, S.V. Mohan, Metalliferous waste in India and knowledge explosion in metal recovery techniques and processes for the prevention of pollution, in: M.N.V. Prasad, K. Shih (Eds.), Environmental Materials and Waste, Academic Press, New York, 2016, pp. 339-390;
      (c) D. Purkayastha, U. Mishra, S. Biswas, J. Water Process. Eng. 2 (2014) 105-128;
      (d) F. Fu, Q. Wang, J. Environ. Manag. 92 (2011) 407-418.

    6. [6]

      (a) J. Shao, J.D. Gu, L. Peng, et al., J. Hazard. Mater. 272 (2014) 83-88;
      (b) M.Q. Jiang, X.Y. Jin, X.Q. Lu, Z.L. Chen, Desalination 252 (2010) 33-39;
      (c) P. Pavasant, R. Apiratikul, V. Sungkhum, et al., Bioresour. Technol. 97 (2006) 2321-2329;
      (d) Z. Feng, S. Zhu, D.R. Martins de Godoi, A.C.S. Samia, D. Scherson, Anal. Chem. 84 (2012) 3764-3770.

    7. [7]

      (a) E. Samper, M. Rodríguez, M.A. De la Rubia, D. Prats, Sep. Purif. Technol. 65 (2009) 337-342;
      (b)J.H. Huang, G.M. Zeng, C.F. Zhou, et al., J.Hazard.Mater.183 (2010) 287-293;
      (c) D.J. Ennigrou, L. Gzara, M.R. Ben Romdhane, M. Dhahbi, Desalination 246 (2009) 363-369.

    8. [8]

      (a) L.E. Kanagy, B.M. Johnson, J.W. Castle, J.H. Rodgers Jr., Bioresour. Technol. 99 (2008) 1877-1885;
      (b) H.A. Qdais, H. Moussa, Desalination 164 (2004) 105-110.

    9. [9]

      (a) A. Üçer, A. Uyanik, Ş.F. Aygün, Sep. Purif. Technol. 47 (2006) 113-118;
      (b) B.E.Reed, S.Arunachalam, B.Thomas, Environ.Prog.Sustain. 13 (1994)60-64;
      (c) B. Xiao, K.M. Thomas, Langmuir 21 (2005) 3892-3902.

    10. [10]

      (a) J.L. Weidman, R.A. Mulvenna, B.W. Boudouris, W.A. Phillip, ACS Appl. Mater. Interfaces 9 (2017) 19152-19160;
      (b) M.X. Tan, Y.N. Sum, J.Y. Ying, Y. Zhang, EnergyEnviron. Sci. 6 (2013) 3254-3259;
      (c) H. Zhu, X. Tan, L. Tan, et al., ACS Sustain. Chem. Eng. 6 (2018) 5206-5213.

    11. [11]

      (a) Y. Wang, G. Ye, H. Chen, et al., J. Mater. Chem. A 3 (2015) 15292-15298;
      (b) J. Zhang, Z. Xiong, C. Li, C. Wu, J. Mol. Liq. 221 (2016) 43-50;
      (c) C. Liu, P. Wang, X. Liu, et al., Chem. -Asian J. 14 (2019) 261-268;
      (d) J. Li, X. Wang, G. Zhao, et al., Chem. Soc. Rev. 47 (2018) 2322-2356.

    12. [12]

      (a) A.P. Côté, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Science 310 (2005) 1166-1170;
      (b) S.Y. Ding, W. Wang, Chem. Soc. Rev. 42 (2013) 548-568;
      (c) P.J. Waller, F. Gándara, O.M. Yaghi, Acc. Chem. Res. 48 (2015) 3053-3063;
      (d) S.Kandambeth, K. Dey, R. Banerjee, J.Am. Chem. Soc.141 (2019) 1807-1822.

    13. [13]

      (a) M.S. Lohse, T. Bein, Adv. Funct. Mater. 28 (2018) 1705553;
      (b) Y. Song, Q. Sun, B. Aguila, S. Ma, Adv. Sci. 6 (2019) 1801410;
      (c) N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 1 (2016) 16068;
      (d) M.X. Wu, Y.W. Yang, Chin. Chem. Lett. 28 (2017) 1135-1143.

    14. [14]

      (a) S.Y. Ding, M. Dong, Y.W. Wang, et al., J. Am. Chem. Soc. 138 (2016) 3031-3037;
      (b) N. Huang, L. Zhai, H. Xu, D. Jiang, J. Am. Chem. Soc. 139 (2017) 2428-2434;
      (c) Q. Sun, B. Aguila, J. Perman, et al., J. Am. Chem. Soc.139 (2017) 2786-2793;
      (d) K. Leus, K. Folens, N.R. Nicomel, et al., J. Hazard. Mater. 353 (2018) 312-319;
      (e) Q. Lu, Y. Ma, H. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 6042-6048;
      (f) Z.A. Ghazi, A.M. Khattak, R. Iqbal, et al., New J. Chem. 42 (2018) 10234-10242;
      (g) F.Z. Cui, R.R. Liang, Q.Y. Qi, G.F. Jiang, X. Zhao, Adv. Sustain. Syst. (2019) 1800150.

    15. [15]

      (a) X.Y. Yang, L.H. Chen, Y. Li, et al., Chem. Soc. Rev. 46 (2017) 481-558;
      (b) S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Adv. Mater. 23 (2011) 2602-2615;
      (c) Y. Li, Z.Y. Fu, B.L. Su, Adv. Funct. Mater. 22 (2012) 4634-4667.

    16. [16]

      R.R. Liang, X. Zhao, Org. Chem. Front. 5 (2018) 3341-3356.  doi: 10.1039/C8QO00830B

    17. [17]

      (a) D.B. Shinde, S. Kandambeth, P. Pachfule, R.R. Kumar, R. Banerjee, Chem. Commun. 51 (2015) 310-313;
      (b) A. Halder, S. Kandambeth, B.P. Biswal, et al., Angew. Chem. Int. Ed. 55 (2016) 7806-7810.

    18. [18]

      Dassault Systèmes BIOVIA, Materials Studio 8.0, Dassault Systèmes San Diego, (2014).

    19. [19]

      (a) T.Y. Zhou, S.Q. Xu, Q. Wen, Z.F. Pang, X. Zhao, J. Am. Chem. Soc. 136 (2014) 15885-15888;
      (b) Z.F. Pang, T.Y. Zhou, R.R. Liang, Q.Y. Qi, X. Zhao, Chem. Sci. 8 (2017) 3866-3870.

    20. [20]

      X. Chen, M. Addicoat, E. Jin, et al., J. Am. Chem. Soc. 137 (2015) 3241-3247.  doi: 10.1021/ja509602c

  • 加载中
    1. [1]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    2. [2]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    3. [3]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    6. [6]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    7. [7]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    12. [12]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    16. [16]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    17. [17]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    18. [18]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    19. [19]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    20. [20]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

Metrics
  • PDF Downloads(9)
  • Abstract views(1629)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return