SiOx-based (0 < x ≤ 2) composites for lithium-ion batteries
* Corresponding author.
E-mail address: cychen@njxzc.edu.cn (C. Chen).
1 These authors contributed equally to this work.
Citation:
Wang Tong, Guo Xiaotian, Duan Huiyu, Chen Changyun, Pang Huan. SiOx-based (0 < x ≤ 2) composites for lithium-ion batteries[J]. Chinese Chemical Letters,
;2020, 31(3): 654-666.
doi:
10.1016/j.cclet.2019.06.002
K. Huang, B. Li, M. Zhao, et al., Chin. Chem. Lett. 28(2017) 2195-2206.
doi: 10.1016/j.cclet.2017.11.010
F. Wang, Y. Liu, Y.F. Zhao, et al., Appl. Sci.-Basel 8(2018) 22-28.
J.L. Ma, F.Z. Ren, G.X. Wang, et al., Int. J. Hydrogen Energy 42(2017) 11654-11661.
doi: 10.1016/j.ijhydene.2017.02.185
R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 21(2011) 9938-9954.
doi: 10.1039/c0jm04225k
M.M. Thackeray, C. Wolverton, E.D. Isaacs, Synth. Lect. Energy Environ. Technol. Sci. Soc. 5(2012) 7854-7863.
D. Shi, R. Zheng, M.J. Sun, et al., Angew. Chem. Int. Ed. 56(2017) 14637-14641.
doi: 10.1002/anie.201709869
Y. Li, J. Song, J. Yang, Renew. Sust. Energy. Rev. 37(2014) 627-633.
doi: 10.1016/j.rser.2014.05.059
C.S. Liu, C.X. Sun, J.Y. Tian, et al., Biosens. Bioelectron. 91(2017) 804-810.
doi: 10.1016/j.bios.2017.01.059
C.S. Liu, Z.H. Zhang, M. Chen, et al., Chem. Commun. (Camb.) 53(2017) 3941-3944.
doi: 10.1039/C7CC00029D
H. Yuan, L. Kong, T. Li, Q. Zhang, Chin. Chem. Lett. 28(2017) 2180-2194.
doi: 10.1016/j.cclet.2017.11.038
C. Yang, X. Zhong, Y. Jiang, Y. Yu, Chin. Chem. Lett. 28(2017) 2231-2234.
doi: 10.1016/j.cclet.2017.11.027
P. Meduri, J.H. Kim, H.B. Russell, et al., J. Phys. Chem. C 114(2010) 10621-10627.
doi: 10.1021/jp100422f
D.M. Chen, J.Y. Tian, Z.W. Wang, et al., Chem. Commun. (Camb.) 53(2017) 10668-10671.
doi: 10.1039/C7CC06073D
S. Zhang, X. Ge, C. Chen, Chin. Chem. Lett. 28(2017) 2274-2276.
doi: 10.1016/j.cclet.2017.11.034
A.K. Shukla, T.P. Kumar, Curr. Sci. 94(2008) 314-331.
M. Zhou, Y. Liu, J. Chen, X. Yang, J. Mater. Chem. A Mater. Energy Sustain. 3(2015) 1068-1076.
doi: 10.1039/C4TA05235H
B. Zhao, S.Y. Huang, T. Wang, et al., J. Power Sources 298(2015) 83-91.
doi: 10.1016/j.jpowsour.2015.08.043
Y. Xia, G. Wang, X. Zhang, B. Wang, H. Wang, Electrochim. Acta 220(2016) 643-653.
doi: 10.1016/j.electacta.2016.10.114
X. Ao, J. Jiang, Y. Ruan, et al., J. Power Sources 359(2017) 340-348.
doi: 10.1016/j.jpowsour.2017.05.064
S.J. Kim, S.H. Moon, M.C. Kim, et al., J. Appl. Electrochem. 48(2018) 1057-1068.
doi: 10.1007/s10800-018-1234-y
W. Tang, X. Guo, X. Liu, et al., Appl. Clay Sci. 162(2018) 499-506.
doi: 10.1016/j.clay.2018.07.004
X. Zhou, S. Chen, H. Zhou, et al., Microporous Mesoporous Mater. 268(2018) 9-15.
doi: 10.1016/j.micromeso.2018.03.035
M.S. Wang, Z.Q. Wang, R. Jia, et al., Appl Surface Sci. 456(2018) 379-389.
doi: 10.1016/j.apsusc.2018.06.147
M. Dirican, Y. Lu, K. Fu, H. Kizil, X. Zhang, RSC Adv. 5(2015) 34744-34751.
doi: 10.1039/C5RA03129J
C. Huang, A. Kim, D.J. Chung, et al., ACS Appl. Mater. Interfaces 10(2018) 15624-15633.
doi: 10.1021/acsami.8b00370
J.I. Lee, N.S. Choi, S. Park, Energy Environ. Sci. 5(2012) 7878-7882.
doi: 10.1039/c2ee21380j
U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 163(2007) 1003-1039.
doi: 10.1016/j.jpowsour.2006.09.084
L. Wei, Z. Hou, H. Wei, Electrochim. Acta 229(2017) 445-451.
doi: 10.1016/j.electacta.2017.01.173
Y. Ma, H. Tang, Y. Zhang, et al., J. Alloys. Compd. 704(2017) 599-606.
doi: 10.1016/j.jallcom.2017.02.083
H. Jung, B.C. Yeo, K.R. Lee, S.S. Han, Phys. Chem. Chem. Phys. 18(2016) 32078-32086.
doi: 10.1039/C6CP06158C
R. Miyazaki, N. Ohta, T. Ohnishi, K. Takada, J. Power Sources 329(2016) 41-49.
doi: 10.1016/j.jpowsour.2016.08.070
C. Liang, L. Zhou, C. Zhou, et al., Mater. Res. Bull. 96(2017) 347-353.
doi: 10.1016/j.materresbull.2017.03.072
X. Luo, H. Zhang, W. Pan, et al., Small 11(2015) 6009-6012.
doi: 10.1002/smll.201502539
J. Zhang, J. Zhang, D. Wang, X. Xie, B. Xia, Mater. Lett. 190(2017) 79-82.
doi: 10.1016/j.matlet.2016.12.141
H. Takezawa, S. Ito, H. Yoshizawa, T. Abe, Chem. Lett. 46(2017) 1365-1367.
doi: 10.1246/cl.170556
H. Takezawa, S. Ito, H. Yoshizawa, T. Abe, J. Power Sources 324(2016) 45-51.
doi: 10.1016/j.jpowsour.2016.05.061
J.H. Kim, H.J. Sohn, H. Kim, G. Jeong, W. Choi, J. Power Sources 170(2007) 456-459.
doi: 10.1016/j.jpowsour.2007.03.081
J. Zhang, J. Gu, H. He, M. Li, J. Solid State Electrochem. 21(2017) 2259-2267.
doi: 10.1007/s10008-017-3578-3
B. Kurc, Ionics 24(2018) 121-131.
doi: 10.1007/s11581-017-2176-9
F. Dai, R. Yi, M.L. Gordin, S. Chen, D. Wang, RSC Adv. 2(2012) 12710-12713.
doi: 10.1039/c2ra22187j
J. Cui, F. Cheng, J. Lin, et al., Powder Technol. 311(2017) 1-8.
doi: 10.1016/j.powtec.2017.01.083
J. Woo, S.H. Baek, J.S. Park, Y.M. Jeong, J.H. Kim, J. Power Sources 299(2015) 25-31.
doi: 10.1016/j.jpowsour.2015.08.086
J. Bae, D.S. Kim, H. Yoo, et al., ACS Appl. Mater. Interfaces 8(2016) 4541-4547.
doi: 10.1021/acsami.5b10707
X. Zhu, D. Yang, J. Li, F. Su, J. Nanosci. Nanotechnol. 15(2015) 15-30.
doi: 10.1166/jnn.2015.9712
F. Luo, B. Liu, J. Zheng, et al., J. Electrochem. Soc. 162(2015) A2509-A2528.
doi: 10.1149/2.0131514jes
J.Y. Li, Q. Xu, G. Li, et al., Mater. Chem. Front. 1(2017) 1691-1708.
doi: 10.1039/C6QM00302H
T. Chen, J. Wu, Q. Zhang, X. Su, J. Power Sources 363(2017) 126-144.
doi: 10.1016/j.jpowsour.2017.07.073
M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, Adv. Mater. 25(2013) 4966-4984.
doi: 10.1002/adma.201301795
M. Winter, G.H. Wrodnigg, J.O. Besenhard, W. Biberacher, P. Novák, J. Electrochem. Soc. 147(2000) 2427-2431.
doi: 10.1149/1.1393548
H.H. Li, L.L. Zhang, C.Y. Fan, et al., Phys. Chem. Chem. Phys. 17(2015) 22893-22899.
doi: 10.1039/C5CP03505H
H. Xia, Z. Yin, F. Zheng, Y. Zhang, Mater. Lett. 205(2017) 83-86.
doi: 10.1016/j.matlet.2017.06.040
Y. Hou, H. Yuan, H. Chen, J. Shen, L. Li, Ceram. Int. 43(2017) 11505-11510.
doi: 10.1016/j.ceramint.2017.05.357
Z. Qiang, X. Liu, F. Zou, et al., J. Phys. Chem. C 121(2017) 16702-16709.
doi: 10.1021/acs.jpcc.7b03795
L. Zhang, K. Shen, W. He, Y. Liu, S. Guo, J. Electrochem. Sci. 12(2017) 10221-10229.
Y. Hyun, J.Y. Choi, H.K. Park, J.Y. Bae, C.S. Lee, Mater. Res. Bull. 82(2016) 92-101.
doi: 10.1016/j.materresbull.2016.03.006
Y. Liang, L. Cai, L. Chen, et al., Nanoscale 7(2015) 3971-3975.
doi: 10.1039/C4NR06611A
H. Wang, P. Wu, M. Qu, et al., ChemElectroChem 2(2015) 508-511.
doi: 10.1002/celc.201402370
L. Yin, M. Wu, Y. Li, et al., New Carbon Mater. 32(2017) 311-318.
doi: 10.1016/S1872-5805(17)60124-0
S. Hao, Z. Wang, L. Chen, Mater. Des. 111(2016) 616-621.
doi: 10.1016/j.matdes.2016.09.020
T.T. Zuo, Y.X. Yin, S.H. Wang, P.F. Wang, Nano Lett. 18(2018) 297-301.
doi: 10.1021/acs.nanolett.7b04136
D. Jia, K. Wang, J. Huang, Chem. Eng. J. 317(2017) 673-686.
doi: 10.1016/j.cej.2017.02.109
X. Cao, X. Chuan, R.C. Massé, et al., J. Mater. Chem. A Mater. Energy Sustain. 3(2015) 22739-22749.
W. Xiao, C. Miao, X. Yan, P. Mei, Ionics 21(2015) 2149-2153.
doi: 10.1007/s11581-015-1391-5
Y. Zhou, Z. Tian, R. Fan, et al., Powder Technol. 284(2015) 365-370.
doi: 10.1016/j.powtec.2015.07.007
R. Fu, K. Zhang, R.P. Zaccaria, et al., Nano Energy 39(2017) 546-553.
doi: 10.1016/j.nanoen.2017.07.040
D. Shen, C. Huang, L. Gan, et al., ACS Appl. Mater. Interfaces 10(2018) 7946-7954.
doi: 10.1021/acsami.7b16724
Y. Hu, X. Liu, X. Zhang, et al., Electrochim. Acta 190(2016) 33-39.
doi: 10.1016/j.electacta.2015.12.211
J. Su, J. Zhao, L. Li, et al., ACS Appl. Mater. Interfaces 9(2017) 17807-17813.
doi: 10.1021/acsami.6b16644
K. Xiao, Q. Tang, Z. Liu, et al., Ceram. Int. 44(2017) 3548-3555.
T. Yang, X. Tian, X. Li, et al., Chem. -Eur. J. 23(2017) 2165-2170.
doi: 10.1002/chem.201604918
J. Wang, X. Hou, M. Zhang, et al., Silicon 9(2017) 97-104.
doi: 10.1007/s12633-015-9398-0
Y. Wang, W. Zhou, L. Zhang, G. Song, S. Cheng, RSC Adv. 5(2015) 63012-63016.
doi: 10.1039/C5RA11243E
D.W. Choi, K.L. Choy, Dalton Trans. 46(2017) 14226-14233.
doi: 10.1039/C7DT01120B
G. Lee, S. Kim, S. Kim, J. Choi, Adv. Funct. Mater. 27(2017) 1703538.
doi: 10.1002/adfm.201703538
D.W. Choi, K.L. Choy, Electrochim. Acta 218(2016) 47-53.
doi: 10.1016/j.electacta.2016.08.116
A. Tarafdar, A.B. Panda, P. Pramanik, Microporous Mesoporous Mater. 84(2005) 223-228.
doi: 10.1016/j.micromeso.2005.05.014
K. Siwinska-Stefa nska, B. Kurc, J. Electrochem. Soc. 164(2017) A728-A734.
doi: 10.1149/2.0911704jes
E.Y. Evschik, D.V. Novikov, V.I. Berestenko, et al., Russ. Chem. Bull. 65(2016) 1986-1989.
doi: 10.1007/s11172-016-1541-6
D.V. Novikov, E.Y. Evschik, V.I. Berestenko, et al., Electrochim. Acta 208(2016) 109-119.
doi: 10.1016/j.electacta.2016.04.179
C. Tang, N. Li, J. Sheng, et al., J. Electrochem. Soc. 164(2017) A6110-A6115.
doi: 10.1149/2.0151701jes
S. Han, Y. Zhao, Y. Tang, et al., Carbon. 81(2015) 203-209.
doi: 10.1016/j.carbon.2014.09.050
J.Y. Kim, D.T. Nguyen, J.S. Kang, S.W. Song, J. Alloys. Compd. 633(2015) 92-96.
doi: 10.1016/j.jallcom.2015.01.309
X. Yuan, H. Xin, X. Qin, et al., Electrochim. Acta 155(2015) 251-256.
doi: 10.1016/j.electacta.2014.12.124
L. Shi, C. Pang, S. Chen, et al., Nano Lett. 17(2017) 3681-3687.
doi: 10.1021/acs.nanolett.7b00906
Y. Li, X. Hou, J. Wang, et al., J. Mater. Sci. Mater. Electron. 26(2015) 7507-7514.
doi: 10.1007/s10854-015-3386-4
D.J. Lee, M.H. Ryou, J.N. Lee, et al., Electrochem. Commun. 34(2013) 98-101.
doi: 10.1016/j.elecom.2013.05.029
X. Huang, M. Li, Appl. Surf. Sci. 439(2018) 336-342.
doi: 10.1016/j.apsusc.2017.12.184
H. Morimoto, D. Higuchi, S. Tobishima, Electrochemistry 83(2015) 813-816.
doi: 10.5796/electrochemistry.83.813
J.H. Yom, J.K. Lee, W.Y. Yoon, J. Appl. Electrochem. 45(2015) 397-403.
doi: 10.1007/s10800-015-0810-7
F. Dou, L. Shi, P. Song, et al., Chem. Eng. J. 338(2018) 488-495.
doi: 10.1016/j.cej.2018.01.048
F. Cheng, G. Wang, Z. Sun, et al., Ceram. Int. 43(2017) 4309-4313.
doi: 10.1016/j.ceramint.2016.12.074
G. Jeong, J.H. Kim, Y.U. Kim, Y.J. Kim, J. Mater. Chem. 22(2012) 7999-8004.
doi: 10.1039/c2jm15677f
A. Yamano, M. Morishita, M. Yanagida, T. Sakai, J. Electrochem. Soc.162(2015) A1730-A1737.
doi: 10.1149/2.0991508jes
M. Li, Y. Yu, J. Li, et al., J. Power Sources 293(2015) 976-982.
doi: 10.1016/j.jpowsour.2015.06.019
Z. Sun, X. Wang, T. Cai, Z. Meng, W.Q. Han, RSC Adv. 6(2016) 40799-40805.
doi: 10.1039/C6RA04885D
Y. Ren, X. Wu, M. Li, Electrochim. Acta 206(2016) 328-336.
doi: 10.1016/j.electacta.2016.04.161
Q. Xu, J.K. Sun, G. Li, et al., Chem. Commun. (Camb.) 53(2017) 12080-12083.
doi: 10.1039/C7CC05816K
P. Lv, H. Zhao, C. Gao, et al., J. Power Sources 274(2015) 542-550.
doi: 10.1016/j.jpowsour.2014.10.077
Q. Xu, J.K. Sun, Y.X. Yin, Y.G. Guo, Adv. Funct. Mater. 28(2017) 1705235.
W. Wu, J. Shi, Y. Liang, et al., Phys. Chem. Chem. Phys.17(2015) 13451-13456.
doi: 10.1039/C5CP01212K
J.H. Cheon, B.Y. Jang, J.S. Kim, J.S. Lee, C.H. Cho, J. Korean Phys. Soc. 62(2013) 1119-1124.
doi: 10.3938/jkps.62.1119
L. Shi, W. Wang, A. Wang, et al., J. Power Sources 318(2016) 184-191.
doi: 10.1016/j.jpowsour.2016.03.111
C. Gao, H. Zhao, P. Lv, et al., J. Electrochem. Soc. 161(2014) A2216-A2221.
doi: 10.1149/2.0911414jes
J. Zhang, X. Zhang, C. Zhang, et al., Energy Fuels 31(2017) 8758-8763.
doi: 10.1021/acs.energyfuels.7b00775
J. Zhang, C. Zhang, Z. Liu, et al., J. Power Sources 339(2017) 86-92.
doi: 10.1016/j.jpowsour.2016.11.044
Z. Li, Q. He, L. He, et al., J. Mater. Chem. A:Mater. Energy Sustain. 5(2017) 4183-4189.
doi: 10.1039/C6TA10583A
J. Cui, Y. Cui, S. Li, et al., ACS Appl. Mater. Interfaces 8(2016) 30239-30247.
doi: 10.1021/acsami.6b10260
Y. Chen, L. Liu, J. Xiong, et al., Adv. Funct. Mater. 25(2015) 6701-6709.
doi: 10.1002/adfm.201503206
Y. Chen, Y. Lin, N. Du, et al., Chem. Commun. (Camb.) 53(2017) 6101-6104.
doi: 10.1039/C7CC02732J
J. Lee, J. Koo, B. Jang, S. Kim, J. Power Sources 329(2016) 79-87.
doi: 10.1016/j.jpowsour.2016.08.035
E. Park, J. Kim, D.J. Chung, et al., ChemSusChem 9(2016) 2754-2758.
doi: 10.1002/cssc.201600798
F. Somodi, C.S. Kong, J.C. Santos, D.E. Morse, New J. Chem. 39(2015) 621-630.
doi: 10.1039/C4NJ01762E
Y.S. Hu, R. Demir-Cakan, M.M. Titirici, et al., Angew. Chem. Int. Ed. 47(2008) 1645-1649.
doi: 10.1002/anie.200704287
J. Niu, S. Zhang, Y. Niu, et al., J. Mater. Chem. A:Mater. Energy Sustain. 3(2015) 19892-19900.
doi: 10.1039/C5TA05386B
B. Jiang, S. Zeng, H. Wang, et al., ACS Appl. Mater. Interfaces 8(2016) 31611-31616.
doi: 10.1021/acsami.6b09775
Y. Sun, L. Fan, W. Li, et al., RSC Adv. 6(2016) 101008.
doi: 10.1039/C6RA21810E
M. Zhu, J. Yang, Z. Yu, H. Chen, F. Pan, J. Mater. Chem. A:Mater. Energy Sustain. 5(2017) 7026-7034.
doi: 10.1039/C7TA01254C
S.J. Lee, H.J. Kim, T.H. Hwang, et al., Nano Lett. 17(2017) 1870-1876.
doi: 10.1021/acs.nanolett.6b05191
Y. Li, Z. Long, P. Xu, et al., Inorg. Chem. Front. 4(2017) 1996-2004.
doi: 10.1039/C7QI00463J
J. Gu, Y. Zeng, X. Feng, X. Wu, C. Zeng, M. Li, J. Alloys. Compd. 662(2016) 185-192.
doi: 10.1016/j.jallcom.2015.12.009
X. Bai, Y. Yu, H.H. Kung, B. Wang, J. Jiang, J. Power Sources 306(2016) 42-48.
doi: 10.1016/j.jpowsour.2015.11.102
L. Qian, J.L. Lan, M. Xue, Y. Yu, X. Yang, RSC Adv. 7(2017) 36697-36704.
doi: 10.1039/C7RA06671F
X. Zhuang, P. Song, G. Chen, et al., ACS Appl. Mater. Interfaces 9(2017) 28464-28472.
doi: 10.1021/acsami.7b05255
C. Hoeltgen, J.E. Lee, B.Y. Jang, Electrochim. Acta 222(2016) 535.
doi: 10.1016/j.electacta.2016.11.006
H. He, D. Kong, B. Wang, et al., Adv. Energy Mater. 6(2016) 1502495.
doi: 10.1002/aenm.201502495
K. Kim, M.S. Kim, H. Choi, et al., Electron. Mater. Lett. 13(2017) 152-159.
doi: 10.1007/s13391-017-6406-0
M.S. Kim, K. Kim, P.R. Cha, et al., J. Alloys. Compd. 699(2017) 351-357.
doi: 10.1016/j.jallcom.2017.01.024
T. Tashiro, M. Kaga, M. Kambara, J. Appl. Phys. 54(2015) 01AD03.
doi: 10.7567/JJAP.54.01AD03
J. Wang, W. Bao, L. Ma, et al., ChemSusChem 8(2015) 4073-4080.
doi: 10.1002/cssc.201500674
A. Hohl, T. Wieder, P.A. Van. Aken, et al., J. Non. Solids 320(2003) 255-280.
doi: 10.1016/S0022-3093(03)00031-0
A. Hirata, S. Kohara, T. Asada, et al., Nat. Commun. 7(2016) 1-7.
J. Yang, Y. Takeda, N. Imanishi, et al., Solid State Ion. 152(2002) 125-129.
H. Takezawa, K. Iwamoto, S. Ito, H. Yoshizawa, J. Power Sources 244(2013) 149-157.
doi: 10.1016/j.jpowsour.2013.02.077
Y. Ren, M. Li, J. Power Sources 306(2016) 459-466.
doi: 10.1016/j.jpowsour.2015.12.064
Q. Si, K. Hanai, T. Ichikawa, et al., J. Power Sources 196(2011) 9774-9779.
doi: 10.1016/j.jpowsour.2011.08.005
N.S. Choi, K.H. Yew, K.Y. Lee, et al., J. Power Sources 161(2006) 1254-1259.
doi: 10.1016/j.jpowsour.2006.05.049
C.C. Nguyen, H. Choi, S.W. Song, J. Electrochem. Soc. 160(2013) A906-A914.
doi: 10.1149/2.118306jes
J.F. Ve'lez, M. Aparicio, J. Mosa, J. Phys. Chem. C 120(2016) 22852-22864.
doi: 10.1021/acs.jpcc.6b07181
J. Hu, W. Wang, H. Peng, et al., Macromolecules 50(2017) 1970-1980.
doi: 10.1021/acs.macromol.7b00035
S. Choudhury, S. Stalin, Y. Deng, L.A. Archer, Chem. Mater. 30(2018) 5996-6004.
doi: 10.1021/acs.chemmater.8b02227
T. Miyuki, Y. Okuyama, T. Sakamoto, et al., Electrochemistry 80(2012) 401-404.
doi: 10.5796/electrochemistry.80.401
R. Yuge, A. Toda, K. Fukatsu, et al., J. Electrochem. Soc. 160(2013) A1789-A1793.
doi: 10.1149/2.075310jes
J.H. Yom, S.W. Hwang, S.M. Cho, W.Y. Yoon, J. Power Sources 311(2016) 159-166.
doi: 10.1016/j.jpowsour.2016.02.025
X. Feng, J. Yang, X. Yu, J. Wang, Y. Nuli, J. Solid State Electrochem. 17(2013) 2461-2469.
doi: 10.1007/s10008-013-2128-x
S. Komaba, K. Shimomura, N. Yabuuchi, et al., J. Phys. Chem. C 115(2019) 13487-13495.
A. Magasinski, B. Zdyrko, I. Kovalenko, et al., ACS Appl. Mater. Interfaces 2(2010) 3004-3010.
doi: 10.1021/am100871y
I. Kovalenko, B. Zdyrko, A. Magasinski, et al., Science 334(2011) 75-79.
doi: 10.1126/science.1209150
A. Guerfi, P. Charest, M. Dontigny, et al., J. Power Sources 196(2011) 5667-5673.
doi: 10.1016/j.jpowsour.2011.02.018
W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi, Nano Lett. 12(2012) 2283-2288.
doi: 10.1021/nl3000908
T. Zhang, J. Gao, H.P. Zhang, et al., Electrochem. Commun. 9(2007) 886-890.
doi: 10.1016/j.elecom.2006.11.026
E. Park, M.S. Park, J. Lee, et al., ChemSusChem 8(2015) 688-694.
doi: 10.1002/cssc.201402907
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
Xiangkang Jiang , Zhixing Wang , Hong Dong , Xiang Zhang , Jin Hu , Manman Chu , Yanshuai Hong , Lei Xu , Wenjie Peng , Xiqian Yu , Jiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Bing Jiang , Gang Zou , Bi Luo , Yan Guo , Jingru Li , Wendi Zhang , Qianxiao Fan , Lehao Liu , Lihua Chu , Qiaobao Zhang , Meicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Xian-Rui Meng , Qian Chen , Mei-Feng Wu , Qiang Wu , Su-Qin Wang , Li-Ping Jin , Fan Zhou , Ren-Li Ma , Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Dongmei Yao , Junsheng Zheng , Liming Jin , Xiaomin Meng , Zize Zhan , Runlin Fan , Cong Feng , Pingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005