Citation: Lu Ling-Hui, Wang Zheng, Xia Weng, Cheng Ping, Zhang Bo, Cao Zhong, He Wei-Min. Sustainable routes for quantitative green selenocyanation of activated alkynes[J]. Chinese Chemical Letters, ;2019, 30(6): 1237-1240. doi: 10.1016/j.cclet.2019.04.033 shu

Sustainable routes for quantitative green selenocyanation of activated alkynes

    * Corresponding author at: Department of Chemistry, Hunan University of Science and Engineering, Yongzhou 425100, China.
    E-mail address: weiminhe2016@yeah.net (W.-M. He)
  • Received Date: 17 March 2019
    Revised Date: 2 April 2019
    Accepted Date: 15 April 2019
    Available Online: 16 June 2019

Figures(4)

  • Most organic reactions require the usage of volatile organic compounds in the synthesis, work-up and purification processes, thus resulting in major environmental pollution and high manufacturing cost. By using cheap biomass lactic acid as the reaction media and catalyst, a sustainable protocol for the synthesis of Z-3-selenocyanatoacrylates and analogues through green selenocyanation of activated alkynes has been achieved. A principal advantage of this protocol is that the usage of organic volatile compounds can be avoided entirely, as the conversion of substrate is almost quantitative or quantitative with a minimal amount of lactic acid employed as reaction media, and the pure products can be conveniently collected through water precipitation.
  • 加载中
    1. [1]

      (a) M. He, B. Han, Sci. China Chem. 60 (2017) 837-838;
      (b) B. Han, Acta Phys. Chim. Sin. 34 (2018) 837-837;
      (c) S. Hao, L.X. Li, D.Q. Dong, Z.L. Wang, X.Y. Yu, Tetrahedron Lett. 59 (2018) 4073-4075;
      (d) G.H. Li, D.Q. Dong, X.Y. Yu, Z.L. Wang, New J. Chem. 43 (2019) 1667-1670;
      (e) Q. Liu, L. Wang, H. Yue, et al., Green Chem. 21 (2019) 1609-1603;
      (f) J. Xu, W. Huang, R. Bai, et al., Green Chem. 21 (2019) 2061-2069.

    2. [2]

      (a) J. Yang, J.N. Tan, Y. Gu, Green Chem. 14 (2012) 3304-3317;
      (b) Y. Gu, F. Jerome, Chem. Soc. Rev. 42 (2013) 9550-9570.

    3. [3]

      (a) M. Salehpour, J. Azizian, H. Kefayati, Chin. Chem. Lett. 28 (2017) 1079-1082;
      (b) Z. Chen, X.X. Shi, D.Q. Ge, et al., Chin. Chem. Lett. 28 (2017) 231-234;
      (c) D.Q. Dong, S.H. Hao, H. Zhang, Z.L. Wang, Chin. Chem. Lett. 28 (2017) 1597-1599;
      (d) W. Wei, P. Bao, H. Yue, et al., Org. Lett. 20 (2018) 5291-5295;
      (e) J. Yang, F. Mei, S. Fu, Y. Gu, Green Chem. 20 (2018) 1367-1374;
      (f) L. Liu, Q. Sun, Z. Yan, et al., Green Chem. 20 (2018) 3927-3930;
      (g) D. Chen, Y. Zhang, X. Pan, F. Wang, S. Huang, Adv. Synth. Catal. 360 (2018) 3607-3612;
      (h) Y. Huo, P. Shen, W. Duan, et al., Chin. Chem. Lett. 29 (2018) 1359-1362;
      (i) J. Li, W. Tang, D. Ren, J. Xu, Z. Yang, Green Chem. 21 (2019) 2088-2094.

    4. [4]

      (a) S.B. Yu, H.J. Zang, X.L. Yang, et al., Chin. Chem. Lett. 28 (2017) 1479-1484;
      (b) X.Y. Li, S.S. Zheng, X.F. Liu, et al., ACS Sustainable Chem. Eng. 6 (2018) 8130-8135;
      (c) B. Lai, R. Bai, Y. Gu, ACS Sustainable Chem. Eng. 6 (2018) 17076-17086;
      (d) D.Q. Dong, W.J. Chen, Y. Yang, X. Gao, Z.L. Wang, ChemistrySelect 4 (2019) 2480-2483.

    5. [5]

      F.Q. Meng, X.J. Feng, W.H. Wang, M. Bao, Chin. Chem. Lett. 28(2017) 900-904.  doi: 10.1016/j.cclet.2016.12.018

    6. [6]

      (a) Y. Han, M. Zhang, Y.Q. Zhang, Z.H. Zhang, Green Chem. 20 (2018) 4891-4900;
      (b) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910.

    7. [7]

      H.C. Hailes, Org. Process Res. Dev. 11(2007) 114-120.  doi: 10.1021/op060157x

    8. [8]

      (a) T. Guo, X.N. Wei, H.Y. Wang, et al., Org. Biomol. Chem.15 (2017) 9455-9464;
      (b) T. Guo, X.N. Wei, Y. Liu, P.K. Zhang, Y.H. Zhao, Org. Chem. Front. (2019), doi: http://dx.doi.org/10.1039/C9QO00198K;
      (c) K. Sun, S. Wang, R. Feng, et al., Org. Lett. 21 (2019) 2052-2055;
      (d) H. Jiang, X. Tang, Z. Xu, et al., Org. Biomol. Chem. 17 (2019) 2715-2720.

    9. [9]

      (a) K. Sun, Y. Lv, Z. Shi, et al., Sci. China Chem. 60 (2017) 730-733;
      (b) K. Sun, X. Wang, F. Fu, et al., Green Chem. 19 (2017) 1490-1493;
      (c) L.H. Lu, S.J. Zhou, W.B. He, et al., Org. Biomol. Chem. 16 (2018) 9064-9068.

    10. [10]

      (a) Y. Yang, L. Tang, S. Zhang, et al., Green Chem. 16 (2014) 4106-4109;
      (b) X. Fu, Y. Meng, X. Li, M. Stępien, P.J. Chmielewski, Chem. Commun. 54 (2018) 2510-2513;
      (c) D. Ren, B. Liu, X. Li, et al., Org. Chem. Front. 6 (2019) 908-918.

    11. [11]

      (a) W. Xie, S. Xie, Y. Zhou, et al., Eur. J. Med. Chem. 81 (2014) 22-27;
      (b) W. Xie, H. Zhang, J. He, et al., Bioorg. Med. Chem. Lett. 27 (2017) 530-532;
      (c) W. Xie, Y. Wu, J. Zhang, et al., Eur. J. Med. Chem. 145 (2018) 35-40;
      (d) Q. Liang, Y. Zhang, M. Zeng, et al., Toxicol. Res. 7 (2018) 521-528;
      (e) Q. Liang, Y. Zhang, M. Huang, Y. Xiao, F. Xiao, Mol. Med. Rep. 19 (2019) 1256-1265;
      (f) Y. Xiao, M. Zeng, L. Yin, N. Li, F. Xiao, Toxicol. Res. 8 (2019) 15-24;
      (g) G.H. Li, D.Q. Dong, Y. Yang, X.Y. Yu, Z.L. Wang, Adv. Synth. Catal. 361 (2019) 832-835.

    12. [12]

      (a) X. Gong, J. Chen, X. Li, W. Xie, J. Wu, Chem. Asian J. 13 (2018) 2543-2548;
      (b) Y. Gu, W. Huang, S. Chen, X. Wang, Org. Lett. 20 (2018) 4285-4289;
      (c) K. Sun, Z. Shi, Z. Liu, et al., Org. Lett. 20 (2018) 6687-6690;
      (d) Y.H. Wang, B. Ouyang, G. Qiu, H. Zhou, J.B. Liu, Org. Biomol. Chem. (2019), doi: http://dx.doi.org/10.1039/C9OB00320G;
      (e) Y. Zong, Y. Lang, M. Yang, et al., Org. Lett. 21 (2019) 1935-1938;
      (f) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. (2019), doi: http://dx.doi.org/10.1002/ajoc.201900172;
      (g) Y. Zhang, K. Sun, Q. Lv, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.03.034;
      (h) T. Yuan, C. Pi, C. You, et al., Chem. Commun. 55 (2019) 163-166;
      (i) G. Li, Z. Gan, K. Kong, X. Dou, D. Yang, Adv. Synth. Catal. 361 (2019) 1808-1814;
      (j) Z. Li, C. Fang, Y. Zheng, et al., Tetrahedron Lett. 59 (2018) 3934-3937;
      (k)G.H.Li, D.Q.Dong, Q.Deng, S.Q.Yan, Z.L.Wang, Synthesis(2019), doi: http://dx.doi.org/10.1055/s-0037-1611787.

    13. [13]

      (a) G.P. Lu, C. Cai, F. Chen, R.L. Ye, B.J. Zhou, ACS Sustainable Chem. Eng. 4 (2016) 1804-1809;
      (b) W. Wei, L. Wang, H. Yue, Y.Y. Jiang, D. Yang, Org. Biomol. Chem. 16 (2018) 7001-7005;
      (c) Z. Yang, L. Jie, Z. Yao, Z. Yang, X. Cui, Adv. Synth. Catal. 361 (2019) 214-218.

    14. [14]

      C.Wu, H.J.Xiao, S.W.Wang, etal., ACS Sustainable Chem. Eng. 7(2019)2169-2175.  doi: 10.1021/acssuschemeng.8b04877

    15. [15]

      (a) L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19 (2017) 5642-5646;
      (b) L.Y. Xie, Y. Duan, L.H. Lu, et al., ACS Sustainable Chem. Eng. 5 (2017) 10407-10412;
      (c)L.Y. Xie, S. Peng, J.X. Tan, et al., ACS Sustainable Chem. Eng. 6 (2018) 16976-16981;
      (d) W.H. Bao, C. Wu, J.T. Wang, et al., Org. Biomol. Chem. 16 (2018) 8403-8407;
      (e) C. Wu, J. Wang, X.Y. Zhang, et al., Org. Biomol. Chem. 16 (2018) 5050-5054;
      (f) Z. Wang, L. Yang, H.L. Liu, et al., Chin. J. Org. Chem. 38 (2018) 2639-2647;
      (g) Y. Sheng, Y. You, Z. Cao, L. Liu, H.C. Wu, Analyst 143 (2018) 2411-2415;
      (h) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62 (2019) 460-464;
      (i) Y. You, K. Zhou, B. Guo, et al., ACS Sens. 4 (2019) 774-779;
      (j) Z. Cao, W.F. Li, C. Liu, et al., Chin. J. Anal. Chem. 47 (2019) 229-236; 8798-8803;
      (l) L.Y. Xie, S. Peng, F. Liu, et al., ACS Sustainable Chem. Eng. 7 (2019) 7193-7199;
      (m) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. (2019), doi: http://dx.doi.org/10.1039/C9CC01047E.

  • 加载中
    1. [1]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    2. [2]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    5. [5]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    6. [6]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    7. [7]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    8. [8]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    9. [9]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    10. [10]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    11. [11]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    19. [19]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(6)
  • Abstract views(723)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return