Citation: Liu Chuan-Zhi, Koppireddi Satish, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting. Halogen bonding-driven formation of supramolecular macrocycles and double helix[J]. Chinese Chemical Letters, ;2019, 30(5): 953-956. doi: 10.1016/j.cclet.2019.02.010 shu

Halogen bonding-driven formation of supramolecular macrocycles and double helix

    * Corresponding authors.
    E-mail addresses: zhangdw@fudan.edu.cn (D.-W. Zhang), ztli@fudan.edu.cn (Z.-T. Li)
  • Received Date: 29 December 2018
    Revised Date: 5 February 2019
    Accepted Date: 19 February 2019
    Available Online: 19 May 2019

Figures(5)

  • The crystal structures of three intramolecularly hydrogen bonded rigid aromatic amide derivatives, which all bear one iodine atom at one end as the donor and one pyridine unit at the other end as the acceptor, have been described to reveal the utility of halogen bonding in inducing the formation of supramolecular macrocycles. All the three compounds formed intermolecular I…N halogen bonding. For short compound 1, halogen bonding induced the formation of an extended supramolecular array. For longer folded compounds 2 and 3, halogen bonding could hold two molecules to form supramolecular macrocycles even by adopting a highly distorted, energetically less favorable conformation (for 3). Depending on the solvent for the growth of crystals, compound 3 could also gave rise to a halogen bonded supramolecular double helix.
  • 加载中
    1. [1]

      (a) A.Priimagi, G.Cavallo, P.Metrangolo, G.Resnati, Acc.Chem.Res.46(2013)2686-2695;
      (b) L.C.Gilday, S.W.Robinson, T.A.Barendt, et al., Chem.Rev.115(2015)7118-7195;
      (c) P.Politzer, P.Lane, M.C.Concha, Y.Ma, J.S.Murray, J.Mol.Model.13(2007)305-311;
      (d) K.Rissanen, CrystEngComm 10(2008)1107-1113;
      (e) A.Mukherjee, S.Tothadi, G.R.Desiraju, Acc.Chem.Res.47(2014)2514-2524;
      (f) T.M.Beale, M.G.Chudzinski, M.G.Sarwar, M.S.Taylor, Chem.Soc.Rev.42(2013)1667-1680;
      (g) H.Wang, W.Wang, W.J.Jin, Chem.Rev.116(2016)5072-5104;
      (h) X.Pang, W.J.Jin, Top.Curr.Chem.359(2015)115-146;
      (i) C.Z.Liu, H.Wang, D.W.Zhang, X.Zhao, Z.T.Li, Chin.J.Org.Chem.39(2019)28-37.

    2. [2]

      (a) J.Li, Y.H.Hu, C.W.Ge, H.G.Gong, X.K.Gao, Chin.Chem.Lett.29(2018)423-428;
      (b) M.Wang, C.Cheng, J.Song, et al., Chin.J.Chem.36(2018)698-707;
      (c) A.Forni, E.Lucenti, C.Botta, E.Cariati, J.Mater.Chem.C 6(2018)4603-4626;
      (d) M.Saccone, G.Cavallo, P.Metrangolo, G.Resnati, A.Priimagi, Top.Curr.Chem.359(2015)147-166;
      (e) D.Yan, H.Yang, Q.Meng, H.Lin, M.Wei, Adv.Funct.Mater.24(2014)587-594;
      (f) G.Fan, D.Yan, Adv.Optical Mater.4(2016)2139-2147;
      (g) D.Yan, D.K.BuÅ263;ar, A.Delori, et al., Chem.-Eur.J.19(2013)8213-8219.

    3. [3]

      (a) A.M.Montana, ChemistrySelect 2(2017)9094-9112;
      (b) M.R.Scholfield, M.C.Ford, A.C.C.Carlsson, et al., Biochemistry 56(2017)2794-2802;
      (c) R.Wilcken, M.O.Zimmermann, A.Lange, A.C.Joerger, F.M.Boeckler, J.Med.Chem.56(2013)1363-1388.

    4. [4]

      (a) L.Mendez, G.Henriquez, S.Sirimulla, M.Narayan, Molecules 22(2017)1397;
      (b) M.C.Ford, P.S.Ho, P.J.Med.Chem.59(2016)1655-1670;
      (c) Y.Lu, Y.Liu, Z.Xu, et al., Exp.Opin.Drug Discov.7(2012)375-383.

    5. [5]

      (a) G.Bergamaschi, L.Lascialfari, A.Pizzi, et al., Chem.Commun.54(2018)10718-10721;
      (b) Y.C.Chan, Y.Y.Yeung, Angew.Chem.Int.Ed.57(2018)3483-3487;
      (c) Y.Wang, J.Wang, G.X.Li, G.He, G.Chen, Org.Lett.19(19)(2017)1442-1445;
      (d) S.Jiang, L.Zhang, D.Cui, et al., Sci.Rep.6(2016)34750;
      (e) X.Sun, W.Wang, J.Ma, S.Yu, Acta Chim.Sinica 75(2017)115-118.

    6. [6]

      (a) R.Peng, Y.Xu, Q.Cao, Chin.Chem.Lett.29(2018)1465-1474;
      (b) S.Zhang, L.Zhao, Acc.Chem.Res.51(2018)2535-2545;
      (c) C.W.Sathiyajith, R.R.Shaikh, Q.Han, et al., Chem.Commun.53(2017)677-696;
      (d) Y.D.Yang, J.L.Sessler, H.Y.Gong, Chem.Commun.53(2017)9684-9696;
      (e) Z.Li, J.Liang, W.Xue, et al., Supramol.Chem.26(2014)54-65;
      (f) W.Q.Ong, H.Zeng, J.Inclus.Phenom.Macrocycl.Chem.76(2013)1-11;
      (g) Y.Lu, D.D.Liang, Z.D.Fu, Q.H.Guo, M.X.Wang, Chin.J.Chem.36(2018)630-634;
      (h) G.Ji, S.Zhang, S.C.K.Hau, L.Zhao, Chin.J.Chem.35(2017)1824-1828;
      (i) T.Xiao, W.Zhong, L.Zhou, X.Y.Hu, L.Wang, et al., Chin.Chem.Lett.30(2019)31-36.

    7. [7]

      (a) Y.Jin, Q.Wang, P.Taynton, W.Zhang, Acc.Chem.Res.47(2014)1575-1586;
      (b) L.Yuan, Y.Han, T.Tao, H.Phan, C.Chi, Angew.Chem.Int.Ed.57(2018)9023-9027;
      (c) Y.Zhang, X.Zheng, N.Cao, C.Yang, H.Li, Org.Lett.20(2018)2356-2359;
      (d) X.He, Y.Xue, C.C.Li, et al., Chem.Sci.9(2018)1481-1487;
      (e) S.Yang, Z.Luan, C.Gao, J.Yu, D.Qu, Sci.China Chem.61(2018)306-310;
      (f) B.Yang, S.B.Yu, H.Wang, D.W.Zhang, Z.T.Li, Chem.-Asian J.13(2018)1312-1317;
      (g) X.F.Li, S.B.Yu, B.Yang, et al., Sci.China Chem.61(2018)830-835.

    8. [8]

      (a) C.M.Drain, K.C.Russell, J.M.Lehn, Chem.Commun.(1996)337-338;
      (b) L.J.Marshall, J.de Mendoza, Org.Lett.15(2013)1548-1551.

    9. [9]

      W.K.Wang, Y.Y.Chen, H.Wang, et al., Chem.-Asian J.9(2014)1039-1044.  doi: 10.1002/asia.v9.4

    10. [10]

      P.M.J.Szell, A.Siiskonen, L.Catalano, et al., New J.Chem.42(2018)10467-10471.  doi: 10.1039/C8NJ00759D

    11. [11]

      (a) B.Gong, Chem.-Eur.J.7(2001)4336-4342;
      (b) I.Huc, Eur.J.Org.Chem.(2004)17-29;
      (c) Z.T.Li, J.L.Hou, C.Li, Acc.Chem.Res.41(2008)1343-1353;
      (d) B.Gong, Acc.Chem.Res.41(2008)1376-1386;
      (e) A.Roy, P.Prabhakaran, P.K.Baruah, G.J.Sanjayan, Chem.Commun.47(2011)11593-11611;
      (f) Q.Gan, Y.Wang, H.Jiang, Curr.Org.Chem.5(2011)1293-1301;
      (g) D.W.Zhang, X.Zhao, J.L.Hou, Z.T.Li, Chem.Rev.112(2012)5271-5316;
      (h) D.W.Zhang, X.Zhao, Z.T.Li, Acc.Chem.Res.47(2014)1961-1970;
      (i) Y.Huo, H.Zeng, Acc.Chem.Res.49(2016)922-930;
      (j) C.Z.Liu, M.Yan, H.Wang, D.W.Zhang, Z.T.Li, ACS Omega 3(2018)5165-5176;
      (k) G.Sun, C.Nie, X.Zhao, Z.Li, Chin.J.Org.Chem.37(2017)1757-1763;
      (l) L.Yang, W.Zhao, Y.K.Che, Y.Wang, H.Jiang, Chin.Chem.Lett.28(2017)1659-1662;
      (m) D.W.Zhang, H.Wang, Z.T.Li, Macromol.Rapid Commun.38(2017)1700179.

    12. [12]

      (a) L.Yuan, W.Feng, K.Yamato, et al., J.Am.Chem.Soc.126(2004)11120-11121;
      (b) H.Jiang, J.M.LÅ233;ger, P.Guionneau, I.Huc, Org.Lett.6(2004)2985-2988;
      (c) F.Li, Q.Gan, L.Xue, Z.M.Wang, H.Jiang, Tetrahedron Lett.50(2009)2367-2369;
      (d) H.Fu, Y.Liu, H.Zeng, Chem.Commun.49(2013)4127-4144;
      (e) Y.He, M.Xu, R.Gao, et al., Angew.Chem.Int.Ed.53(2014)11834-11839;
      (f) B.Qin, X.Chen, X.Fang, et al., Org.Lett.10(2008)5127-5130;
      (g) P.Xin, L.Zhang, P.Su, J.L.Hou, Z.T.Li, Chem.Commun.51(2015)4819-4822;
      (h) J.B.Lin, X.N.Xu, X.K.Jiang, Z.T.Li, J.Org.Chem.73(2008)9403-9410;
      (i) X.N.Xu, L.Wang, Z.T.Li, Chem.Commun.(2009)6634-6636.

    13. [13]

      C.Z.Liu, S.Koppireddi, H.Wang, D.W.Zhang, Z.T.Li, Angew.Chem.Int.Ed.58(2019)226-230.  doi: 10.1002/anie.201811561

    14. [14]

      H.Jiang, J.M.Léger, I.Huc, J.Am.Chem.Soc.25(2003)3448-3449.
       

    15. [15]

      H.A.K.Howard, V.J.Hoy, D.O'Hagan, G.T.Smith, Tetrahedron 52(1996)12613-12622.  doi: 10.1016/0040-4020(96)00749-1

  • 加载中
    1. [1]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    2. [2]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    3. [3]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    4. [4]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    5. [5]

      Qiao ZhangXin TanZihang LiuJingyu MaDongqi CaoFenfang LiShengyi Dong . Optically healable and mechanically tough supramolecular glass from low-molecular-weight compounds. Chinese Chemical Letters, 2025, 36(8): 110660-. doi: 10.1016/j.cclet.2024.110660

    6. [6]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    7. [7]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    8. [8]

      Baoqi WuRongzhi TangZhi-Wei LiFeng LinZongyu SunHuanyu XiaLin JiangYu Tan . Selective encapsulation of azo compounds by tetracationic cyclophane in water and photo-controlled reversible release. Chinese Chemical Letters, 2025, 36(9): 110896-. doi: 10.1016/j.cclet.2025.110896

    9. [9]

      Xin ZhangZhihao LuTianci RenJunxiang TangShuo LiChenghao ZhuLijun MaoDa Ma . Fluorescent "Texas-sized" macrocyclic receptors for the recognition and detection of nucleotides in water. Chinese Chemical Letters, 2025, 36(11): 110946-. doi: 10.1016/j.cclet.2025.110946

    10. [10]

      Ziqi Chen Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695

    11. [11]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    12. [12]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    13. [13]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    14. [14]

      Xiaodong Zhang Bohui Xu Deshuai Xiao Xinyuan Zhang Pifu Gong Zheshuai Lin . From centrosymmetric CN3H6C6H5SO3 to non-centrosymmetric CN3H6C6H4SO3(OH): Hydroxyl introduced hydrogen bond reconstruction to realize strong second harmonic generation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100707-100707. doi: 10.1016/j.cjsc.2025.100707

    15. [15]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    16. [16]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    17. [17]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    18. [18]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    19. [19]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    20. [20]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

Metrics
  • PDF Downloads(5)
  • Abstract views(1549)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return