Citation: Liu Chuan-Zhi, Koppireddi Satish, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting. Halogen bonding-driven formation of supramolecular macrocycles and double helix[J]. Chinese Chemical Letters, ;2019, 30(5): 953-956. doi: 10.1016/j.cclet.2019.02.010 shu

Halogen bonding-driven formation of supramolecular macrocycles and double helix

    * Corresponding authors.
    E-mail addresses: zhangdw@fudan.edu.cn (D.-W. Zhang), ztli@fudan.edu.cn (Z.-T. Li)
  • Received Date: 29 December 2018
    Revised Date: 5 February 2019
    Accepted Date: 19 February 2019
    Available Online: 19 May 2019

Figures(5)

  • The crystal structures of three intramolecularly hydrogen bonded rigid aromatic amide derivatives, which all bear one iodine atom at one end as the donor and one pyridine unit at the other end as the acceptor, have been described to reveal the utility of halogen bonding in inducing the formation of supramolecular macrocycles. All the three compounds formed intermolecular I…N halogen bonding. For short compound 1, halogen bonding induced the formation of an extended supramolecular array. For longer folded compounds 2 and 3, halogen bonding could hold two molecules to form supramolecular macrocycles even by adopting a highly distorted, energetically less favorable conformation (for 3). Depending on the solvent for the growth of crystals, compound 3 could also gave rise to a halogen bonded supramolecular double helix.
  • 加载中
    1. [1]

      (a) A.Priimagi, G.Cavallo, P.Metrangolo, G.Resnati, Acc.Chem.Res.46(2013)2686-2695;
      (b) L.C.Gilday, S.W.Robinson, T.A.Barendt, et al., Chem.Rev.115(2015)7118-7195;
      (c) P.Politzer, P.Lane, M.C.Concha, Y.Ma, J.S.Murray, J.Mol.Model.13(2007)305-311;
      (d) K.Rissanen, CrystEngComm 10(2008)1107-1113;
      (e) A.Mukherjee, S.Tothadi, G.R.Desiraju, Acc.Chem.Res.47(2014)2514-2524;
      (f) T.M.Beale, M.G.Chudzinski, M.G.Sarwar, M.S.Taylor, Chem.Soc.Rev.42(2013)1667-1680;
      (g) H.Wang, W.Wang, W.J.Jin, Chem.Rev.116(2016)5072-5104;
      (h) X.Pang, W.J.Jin, Top.Curr.Chem.359(2015)115-146;
      (i) C.Z.Liu, H.Wang, D.W.Zhang, X.Zhao, Z.T.Li, Chin.J.Org.Chem.39(2019)28-37.

    2. [2]

      (a) J.Li, Y.H.Hu, C.W.Ge, H.G.Gong, X.K.Gao, Chin.Chem.Lett.29(2018)423-428;
      (b) M.Wang, C.Cheng, J.Song, et al., Chin.J.Chem.36(2018)698-707;
      (c) A.Forni, E.Lucenti, C.Botta, E.Cariati, J.Mater.Chem.C 6(2018)4603-4626;
      (d) M.Saccone, G.Cavallo, P.Metrangolo, G.Resnati, A.Priimagi, Top.Curr.Chem.359(2015)147-166;
      (e) D.Yan, H.Yang, Q.Meng, H.Lin, M.Wei, Adv.Funct.Mater.24(2014)587-594;
      (f) G.Fan, D.Yan, Adv.Optical Mater.4(2016)2139-2147;
      (g) D.Yan, D.K.BuÅ263;ar, A.Delori, et al., Chem.-Eur.J.19(2013)8213-8219.

    3. [3]

      (a) A.M.Montana, ChemistrySelect 2(2017)9094-9112;
      (b) M.R.Scholfield, M.C.Ford, A.C.C.Carlsson, et al., Biochemistry 56(2017)2794-2802;
      (c) R.Wilcken, M.O.Zimmermann, A.Lange, A.C.Joerger, F.M.Boeckler, J.Med.Chem.56(2013)1363-1388.

    4. [4]

      (a) L.Mendez, G.Henriquez, S.Sirimulla, M.Narayan, Molecules 22(2017)1397;
      (b) M.C.Ford, P.S.Ho, P.J.Med.Chem.59(2016)1655-1670;
      (c) Y.Lu, Y.Liu, Z.Xu, et al., Exp.Opin.Drug Discov.7(2012)375-383.

    5. [5]

      (a) G.Bergamaschi, L.Lascialfari, A.Pizzi, et al., Chem.Commun.54(2018)10718-10721;
      (b) Y.C.Chan, Y.Y.Yeung, Angew.Chem.Int.Ed.57(2018)3483-3487;
      (c) Y.Wang, J.Wang, G.X.Li, G.He, G.Chen, Org.Lett.19(19)(2017)1442-1445;
      (d) S.Jiang, L.Zhang, D.Cui, et al., Sci.Rep.6(2016)34750;
      (e) X.Sun, W.Wang, J.Ma, S.Yu, Acta Chim.Sinica 75(2017)115-118.

    6. [6]

      (a) R.Peng, Y.Xu, Q.Cao, Chin.Chem.Lett.29(2018)1465-1474;
      (b) S.Zhang, L.Zhao, Acc.Chem.Res.51(2018)2535-2545;
      (c) C.W.Sathiyajith, R.R.Shaikh, Q.Han, et al., Chem.Commun.53(2017)677-696;
      (d) Y.D.Yang, J.L.Sessler, H.Y.Gong, Chem.Commun.53(2017)9684-9696;
      (e) Z.Li, J.Liang, W.Xue, et al., Supramol.Chem.26(2014)54-65;
      (f) W.Q.Ong, H.Zeng, J.Inclus.Phenom.Macrocycl.Chem.76(2013)1-11;
      (g) Y.Lu, D.D.Liang, Z.D.Fu, Q.H.Guo, M.X.Wang, Chin.J.Chem.36(2018)630-634;
      (h) G.Ji, S.Zhang, S.C.K.Hau, L.Zhao, Chin.J.Chem.35(2017)1824-1828;
      (i) T.Xiao, W.Zhong, L.Zhou, X.Y.Hu, L.Wang, et al., Chin.Chem.Lett.30(2019)31-36.

    7. [7]

      (a) Y.Jin, Q.Wang, P.Taynton, W.Zhang, Acc.Chem.Res.47(2014)1575-1586;
      (b) L.Yuan, Y.Han, T.Tao, H.Phan, C.Chi, Angew.Chem.Int.Ed.57(2018)9023-9027;
      (c) Y.Zhang, X.Zheng, N.Cao, C.Yang, H.Li, Org.Lett.20(2018)2356-2359;
      (d) X.He, Y.Xue, C.C.Li, et al., Chem.Sci.9(2018)1481-1487;
      (e) S.Yang, Z.Luan, C.Gao, J.Yu, D.Qu, Sci.China Chem.61(2018)306-310;
      (f) B.Yang, S.B.Yu, H.Wang, D.W.Zhang, Z.T.Li, Chem.-Asian J.13(2018)1312-1317;
      (g) X.F.Li, S.B.Yu, B.Yang, et al., Sci.China Chem.61(2018)830-835.

    8. [8]

      (a) C.M.Drain, K.C.Russell, J.M.Lehn, Chem.Commun.(1996)337-338;
      (b) L.J.Marshall, J.de Mendoza, Org.Lett.15(2013)1548-1551.

    9. [9]

      W.K.Wang, Y.Y.Chen, H.Wang, et al., Chem.-Asian J.9(2014)1039-1044.  doi: 10.1002/asia.v9.4

    10. [10]

      P.M.J.Szell, A.Siiskonen, L.Catalano, et al., New J.Chem.42(2018)10467-10471.  doi: 10.1039/C8NJ00759D

    11. [11]

      (a) B.Gong, Chem.-Eur.J.7(2001)4336-4342;
      (b) I.Huc, Eur.J.Org.Chem.(2004)17-29;
      (c) Z.T.Li, J.L.Hou, C.Li, Acc.Chem.Res.41(2008)1343-1353;
      (d) B.Gong, Acc.Chem.Res.41(2008)1376-1386;
      (e) A.Roy, P.Prabhakaran, P.K.Baruah, G.J.Sanjayan, Chem.Commun.47(2011)11593-11611;
      (f) Q.Gan, Y.Wang, H.Jiang, Curr.Org.Chem.5(2011)1293-1301;
      (g) D.W.Zhang, X.Zhao, J.L.Hou, Z.T.Li, Chem.Rev.112(2012)5271-5316;
      (h) D.W.Zhang, X.Zhao, Z.T.Li, Acc.Chem.Res.47(2014)1961-1970;
      (i) Y.Huo, H.Zeng, Acc.Chem.Res.49(2016)922-930;
      (j) C.Z.Liu, M.Yan, H.Wang, D.W.Zhang, Z.T.Li, ACS Omega 3(2018)5165-5176;
      (k) G.Sun, C.Nie, X.Zhao, Z.Li, Chin.J.Org.Chem.37(2017)1757-1763;
      (l) L.Yang, W.Zhao, Y.K.Che, Y.Wang, H.Jiang, Chin.Chem.Lett.28(2017)1659-1662;
      (m) D.W.Zhang, H.Wang, Z.T.Li, Macromol.Rapid Commun.38(2017)1700179.

    12. [12]

      (a) L.Yuan, W.Feng, K.Yamato, et al., J.Am.Chem.Soc.126(2004)11120-11121;
      (b) H.Jiang, J.M.LÅ233;ger, P.Guionneau, I.Huc, Org.Lett.6(2004)2985-2988;
      (c) F.Li, Q.Gan, L.Xue, Z.M.Wang, H.Jiang, Tetrahedron Lett.50(2009)2367-2369;
      (d) H.Fu, Y.Liu, H.Zeng, Chem.Commun.49(2013)4127-4144;
      (e) Y.He, M.Xu, R.Gao, et al., Angew.Chem.Int.Ed.53(2014)11834-11839;
      (f) B.Qin, X.Chen, X.Fang, et al., Org.Lett.10(2008)5127-5130;
      (g) P.Xin, L.Zhang, P.Su, J.L.Hou, Z.T.Li, Chem.Commun.51(2015)4819-4822;
      (h) J.B.Lin, X.N.Xu, X.K.Jiang, Z.T.Li, J.Org.Chem.73(2008)9403-9410;
      (i) X.N.Xu, L.Wang, Z.T.Li, Chem.Commun.(2009)6634-6636.

    13. [13]

      C.Z.Liu, S.Koppireddi, H.Wang, D.W.Zhang, Z.T.Li, Angew.Chem.Int.Ed.58(2019)226-230.  doi: 10.1002/anie.201811561

    14. [14]

      H.Jiang, J.M.Léger, I.Huc, J.Am.Chem.Soc.25(2003)3448-3449.
       

    15. [15]

      H.A.K.Howard, V.J.Hoy, D.O'Hagan, G.T.Smith, Tetrahedron 52(1996)12613-12622.  doi: 10.1016/0040-4020(96)00749-1

  • 加载中
    1. [1]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    2. [2]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    3. [3]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    6. [6]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    7. [7]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    8. [8]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    9. [9]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    10. [10]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    11. [11]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    12. [12]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    13. [13]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    14. [14]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    15. [15]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    16. [16]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    17. [17]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    18. [18]

      Ying-Mei ZhongZi-Jun XiaYu-Hang HuLi-Peng ZhouLi-Xuan CaiQing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164

    19. [19]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    20. [20]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

Metrics
  • PDF Downloads(5)
  • Abstract views(716)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return