Citation: Li Chaojie, Wei Zhangwen, Pan Mei, Deng Haiying, Jiang Jijun, Su Chengyong. Structural tuning of coordination polymers by 4-connecting metal node and secondary building process[J]. Chinese Chemical Letters, ;2019, 30(6): 1297-1301. doi: 10.1016/j.cclet.2019.02.001 shu

Structural tuning of coordination polymers by 4-connecting metal node and secondary building process

    * Corresponding author.
    E-mail address: panm@mail.sysu.edu.cn (M. Pan)
  • Received Date: 15 January 2019
    Revised Date: 28 January 2019
    Accepted Date: 2 February 2019
    Available Online: 4 June 2019

Figures(5)

  • Five transition metal coordination polymers, {[Cu(4-pmntd)2(NO3)2]·2CHCl3}n(1), {[Cu(4-pmntd)2(NO3)2]·3C7H8}n (2), {[Cu(4-pmntd)2(CF3SO3)(H2O)]·CF3SO3·H2O·CH3OH}n (3), [Cd(4-pmntd)2]n·nSiF6·x(CH3OH)·y(CHCl3) (4)and[Zn(4-pmntd)2(CF3SO3)2]n·χ(solvent) (5), have been obtained from a ditopic ligand, N, N'-bis(4-pyridylmethyl)naphthalene diimide (4-pmntd). Either sql-or dia-structures are generated from four connecting coordination nodes of the metal centers. While delicate interpenetration and structural tuning in these complexes is achieved by the different conformations and spatially extending geometries adopted by the ligand and "secondary building process" induced by pillar-like anions.
  • 加载中
    1. [1]

      (a) W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev. 46 (2017) 3242-3285;
      (b) Y. Zhang, S. Yuan, G. Day, et al., Coord. Chem. Rev. 354 (2018) 28-45;
      (c) M. Pan, K. Wu, J.H. Zhang, C.Y. Su, Coord. Chem. Rev. 378 (2017) 333-349;
      (d) M. Pan, W.M. Liao, S.Y. Yin, S.S. Sun, C.Y. Su, Chem. Rev. 118 (2018) 8889-8935.

    2. [2]

      (a) M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 112 (2012) 1196-1231; (b) L.Q. Ma, C. Abney, W.B. Lin, Chem. Soc. Rev. 38 (2009) 1248-1256; (c) K. Sumida, D.L. Rogow, J.A. Mason, et al., Chem. Rev. 112 (2012) 724-781.

    3. [3]

      (a) A.K. Chaudhari, H.J. Kim, I. Han, J.C. Tan, Adv. Mater. 29 (2017) 1701463;
      (b) L. Chen, J.W. Ye, H.P. Wang, et al., Nat. Commun. 8 (2017) 15985; (c) W.M. Liao, J.H. Zhang, S.Y. Yin, et al., Nat. Commun. 9 (2018) 2401.

    4. [4]

      (a) S.Y. Hao, S.X. Hou, K.Van Hecke, G.H. Cui, Dalton Trans. 46 (2017) 1951-1964;
      (b) T.K. Maji, K. Uemura, H. C. Chang, R.Matsuda, S. Kitagawa, Angew.Chem. Int. Ed. 43 (2004) 3269-3272.

    5. [5]

      (a) R. Liang, Y.K. Guo, Y.T. Wang, X.P. Xuan, Inorg. Chim. Acta 471 (2018) 50-56;
      (b) K. Takaoka, M. Kawano, M. Tominaga, M. Fujita, Angew. Chem. Int. Ed. 44 (2005) 2151-2154.

    6. [6]

      (a) S.R. Zheng, S.Y. Yin, M. Pan, et al., Inorg. Chem. Commun. 55 (2015) 116-119;
      (b) M. Pan, B.B. Du, Y.X. Zhu, et al., Chem.-Eur. J. 22 (2016) 2440-2451;
      (c) S.L. Cai, M. Pan, S.R. Zheng, et al., CrystEngComm 14 (2012) 2308-2315.

    7. [7]

      (a) L. Carlucci, G. Ciani, D.M. Proserpio, S. Rizzato, Chem.-Eur. J. 8 (2002) 1519-1526;
      (b) P. Mondal, B. Dey, S. Roy, et al., Cryst. Growth Des. 18 (2018) 6211-6220.

    8. [8]

      a) S. Liu, M. Guo, Y. Sun, et al., Inorg. Chim. Acta 474 (2018) 73-80;
      (b) R.B. Lin, S. Xiang, B. Li, et al., Isreal J. Chem. 58 (2018) 949-961.

    9. [9]

      S. Hu, K.H. He, M.H. Zeng, H.H. Zou, Y.M. Jiang, Inorg. Chem. 47 (2008) 5218-5224.  doi: 10.1021/ic800050u

    10. [10]

      H.D. Mai, I. Lee, S. Lee, H. Yoo, Eur. J. Inorg. Chem. 31 (2017) 3736-3743.

    11. [11]

      (a) Z. Han, W. Shi, P. Cheng, Chin. Chem. Lett. 29 (2018) 819-822;
      (b) T. Xia, J. Wang, K. Jiang, et al., Chin. Chem. Lett. 29 (2018) 861-864;
      (c) W.H. Wang, Q. Gao, A.L. Li, et al., Chin. Chem. Lett. 29 (2018) 336-338.

    12. [12]

      (a) M. Pan, Y.X. Zhu, K. Wu, et al., Angew. Chem. Int. Ed. 56 (2017) 14582-14586;
      (b) W.M. Liao, J.H. Zhang, Z. Wang, et al., J. Mater. Chem. A 6 (2018) 11337-11345.

    13. [13]

      (a) S.R. Zheng, M. Pan, K. Wu, et al., Cryst. Growth Des. 15 (2015) 625-634;
      (b) Y.X. Zhu, Z.W. Wei, M. Pan, et al., Dalton Trans. 45 (2016) 943-950;
      (c) H.Y. Deng, J.R. He, M. Pan, L. Li, C.Y. Su, CrystEngComm 11 (2009) 909-917;
      (d) H.J. Yu, Z.M. Liu, S.Y. Yin, et al., Inorg. Chem. Commun. 86 (2017) 223-226;
      (e) H.J. Yu, Z.M. Liu, M. Pan, et al., Eur. J. Inorg. Chem. 1 (2018) 80-85.

    14. [14]

      A.L. Spek, J. Appl. Cryst. 36 (2003) 7-13.  doi: 10.1107/S0021889802022112

    15. [15]

      (a) L. Yang, X. Cui, Y. Zhang, Q. Yang, H. Xing, J. Mater. Chem. A 6 (2018) 24452-24458;
      (b) D.T. Vodak, M.E. Braun, J. Kim, M. Eddaoudi, O.M. Yaghi, Chem. Commun. (2001) 2534-2535;
      (c) D. Sun, R. Cao, Y. Sun, et al., Chem. Commun. (2003) 1528-1529.

  • 加载中
    1. [1]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    2. [2]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    3. [3]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    4. [4]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    5. [5]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    11. [11]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    12. [12]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    13. [13]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    14. [14]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    15. [15]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    16. [16]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    17. [17]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    18. [18]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    19. [19]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    20. [20]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

Metrics
  • PDF Downloads(2)
  • Abstract views(653)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return