Citation: Long Shuangshuang, Chi Weijie, Miao Lu, Qiao Qinglong, Liu Xiaogang, Xu Zhaochao. Strong π-π stacking interactions led to the mis-assignment of dimer emissions to the monomers of 1-acetylpyrene[J]. Chinese Chemical Letters, ;2019, 30(3): 601-604. doi: 10.1016/j.cclet.2018.12.008 shu

Strong π-π stacking interactions led to the mis-assignment of dimer emissions to the monomers of 1-acetylpyrene

Figures(8)

  • Understanding relationships between molecular structures and fluorescent properties is critical to enable rational deployment of fluorophores. 1-Acetylpyrene is an important pyrene-derivative, used extensively as an environment-sensitive probe. In the past, the fluorescence of 1-acetylpyrene was considered to be polarity-sensitive with a large positive solvatochromism, and its monomer emissions were believed in the range of 410-470 nm. In this paper, our experimental and theoretical studies showed that the monomer fluorescence of 1-acetylpyrene is centered at ~390 nm, which is similar to that of pyrene dyes and not polarity-sensitive. Previously observed "monomer emission" has been re-assigned to that of dimers, which represent the dominant existence form of 1-acetylpyrene in the solution phase, as a result of strong intermolecular π-π stacking interactions.
  • 加载中
    1. [1]

      X. Qian, Z. Xu, Chem. Soc. Rev. 44 (2015) 4487-4493.  doi: 10.1039/C4CS00292J

    2. [2]

      X. Liu, Q. Qiao, W. Tian, et al., J. Am. Chem. Soc. 138 (2016) 6960-6963.  doi: 10.1021/jacs.6b03924

    3. [3]

      (a) X. Liu, Z. Xu, J.M. Cole, J. Phys. Chem. C 117 (2013) 16584-16595;
      (b) X. Liu, J.M. Cole, Z. Xu, J. Phys. Chem. C 121 (2017) 13274-13279.

    4. [4]

      (a) S. Leng, Q. Qiao, Y. Gao, et al., Chin. Chem. Lett. 28 (2017) 1911-1915;
      (b) L. Peng, Y. Xu, P. Zou, Chin. Chem. Lett. 28 (2017) 1925-1928;
      (c) Z. Xu, J. Chen, L. Hu, et al., Chin. Chem. Lett. 28 (2017) 1935-1942;
      (d) P. Ning, W. Wang, M. Chen, et al., Chin. Chem. Lett. 28 (2017) 1943-1951;
      (e) D. Wu, Y. Shen, J. Chen, et al., Chin. Chem. Lett. 28 (2017) 1979-1982.

    5. [5]

      W. Chi, W. Yin, Q. Qi, et al., Mater. Chem. Front. 1 (2017) 2383-2390.  doi: 10.1039/C7QM00345E

    6. [6]

      Q. Qiao, W. Liu, J. Chen, et al., Dyes Pigm. 147 (2017) 327-333.  doi: 10.1016/j.dyepig.2017.08.032

    7. [7]

      S. Leng, Q. Qiao, L. Miao, Chem. Commun. 53 (2017) 6448-6451.  doi: 10.1039/C7CC01483J

    8. [8]

      L. Dai, D. Wu, Q. Qiao, et al., Chem. Commun. 52 (2016) 2095-2098.  doi: 10.1039/C5CC09403H

    9. [9]

      J. Luo, Z. Xie, J.W.Y. Lam, et al., Chem. Commun. 37 (2001) 1740-1741.

    10. [10]

      J. Mei, N.L.C. Leung, R.T.K. Kowk, et al., Chem. Rev. 115 (2015) 11718-11940.  doi: 10.1021/acs.chemrev.5b00263

    11. [11]

      (a) X. Liu, D. Mao, J.M. Cole, et al., Chem. Commun. 50 (2014) 9329-9332;
      (b) D. Miao, X. Liu, Q. Qiao, et al., Analyst 14 (2015) 1008-1013.

    12. [12]

      Z. Xu, N.J. Singh, J. Lim, et al., J. Am. Chem. Soc. 131 (2009) 15528-15533.  doi: 10.1021/ja906855a

    13. [13]

      (a) B.T. Tuten, J.P. Menzel, K. Pahnke, et al., Chem. Commun. 53 (2017) 4501-4504;
      (b) L. Pukenas, P. Prompinit, B. Nishitha, et al., ACS Appl. Mater. Interfaces 9 (2017) 18388-18397;
      (c) R. Kasprzyk, J. Kowalska, Z. Wieczorek, et al., Org. Biomol. Chem. 14 (2016) 3863-3868;
      (d) S. Barman, S.K. Mukhopadhyay, K.K. Behara, et al., ACS Appl. Mater. Interfaces 6 (2014) 7045-7054.

    14. [14]

      T. Shimada, D. Kim, N. Murayama, et al., Chem. Res. Toxicol. 26 (2013) 517-528.  doi: 10.1021/tx300492j

    15. [15]

      Y. Niko, Y. Hiroshige, S. Kawauchi, et al., Tetrahedron 68 (2012) 6177-6185.  doi: 10.1016/j.tet.2012.05.072

    16. [16]

      (a) A. Jana, S. Atta, S.K. Sarkar, et al., Tetrahedron 66 (2010) 9798-9807;
      (b) R.J. Berry, P. Douglas, M.S. Garley, et al., J. Photochem. Photobiol. A 120 (1999) 29-36;
      (c) K. Szczubiałka, Ł. Moczek, A. Goliszek, et al., J. Fluor Chem. 126 (2005) 1409-1418.

    17. [17]

      (a) Y. Niko, S. Sasaki, K. Narushima, et al., J. Org. Chem. 80 (2015) 10794-10805;
      (b) S.K. Rajagopal, A.M. Philip, K. Nagarajan, et al., Chem. Commun. 50 (2014) 8644-8647.

    18. [18]

      (a) F. Ito, T. Kakiuchi, T. Sakano, et al., Phys. Chem. Chem. Phys. 12 (2010) 10923-10927;
      (b) R. Flamhol, D. Plazuk, J. Zakrzewski, et al., RSC Adv. 4 (2014) 31594_-31601.

    19. [19]

      Y. Nishimura, T. Takemura, S. Aril, ARKIVOC 2009(x) 43-525.

    20. [20]

      H. Paloniemi, T. Ääritalo, T. Laiho, et al., J. Phys. Chem. B 109 (2005) 8634-8642.  doi: 10.1021/jp0443097

    21. [21]

      F. Ito, T. Sagawa, H. Koshiyama, Res. Chem. Intermediat. 41 (2015) 6897-6906.  doi: 10.1007/s11164-014-1786-3

    22. [22]

      C.T. Supuran, Nat. Rev. Drug Discov. 7 (2008) 168-181.  doi: 10.1038/nrd2467

  • 加载中
    1. [1]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    2. [2]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    3. [3]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    4. [4]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    5. [5]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    6. [6]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    7. [7]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    8. [8]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    9. [9]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    10. [10]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    11. [11]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    12. [12]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    13. [13]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    14. [14]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    15. [15]

      . 第41卷第1期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(1): -.

    16. [16]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    17. [17]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    18. [18]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    19. [19]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    20. [20]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

Metrics
  • PDF Downloads(12)
  • Abstract views(931)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return