Au-Fe3O4 heterostructures for catalytic, analytical, and biomedical applications
-
* Corresponding author.
E-mail address: dingya@cpu.edu.cn (Y. Ding)
Citation:
Liu Baoling, Zhang Hongchen, Ding Ya. Au-Fe3O4 heterostructures for catalytic, analytical, and biomedical applications[J]. Chinese Chemical Letters,
;2018, 29(12): 1725-1730.
doi:
10.1016/j.cclet.2018.12.006
T. Cui, J.J. Liang, H. Chen, et al., ACS Appl. Mater. Interface 9(2017) 8569-8580.
doi: 10.1021/acsami.6b16669
R. Hao, J. Yu, Z.G. Ge, et al., Nanoscale 5(2013) 11954-11963.
doi: 10.1039/c3nr04157c
F. Oyarzun-Ampuero, A. Vidal, M. Concha, et al., Curr. Pharm. Des. 21(2015) 4329-4341.
doi: 10.2174/1381612821666150901104601
S. Wang, J. Lin, Z.T. Wang, et al., Adv. Mater. 29(2017) 1701013.
doi: 10.1002/adma.201701013
I. Schick, S. Lorenz, D. Gehrig, et al., J. Am. Chem. Soc. 136(2014) 2473-2483.
doi: 10.1021/ja410787u
P.P. Yang, Y.G. Zhai, G.B. Qi, et al., Small 12(2016) 5423-5430.
doi: 10.1002/smll.v12.39
Y. Dou, X. Li, W.T. Yang, et al., ACS Appl. Mater. Interface 9(2017) 1263-1272.
doi: 10.1021/acsami.6b13493
Q. Wu, Y.N. Lin, F.J. Wo, et al., Small 13(2017)1701129.
doi: 10.1002/smll.v13.39
B. Ankudze, A. Philip, T.T. Pakkanen, Sensor. Actuat. B-Chem. 265(2018) 668-674.
doi: 10.1016/j.snb.2018.03.088
Y. Ding, Z. Jiang, K. Saha, et al., Mol. Ther. 22(2014) 1075-1083.
doi: 10.1038/mt.2014.30
J.J. Liang, Y.Y. Zhou, J. Wu, Y. Ding, Curr. Drug Met. 15(2014) 620-631.
doi: 10.2174/1389200215666140605131427
M.C. Daniel, D. Astruc, Chem. Rev. 104(2004) 293-346.
doi: 10.1021/cr030698+
C.M. Cobley, J. Chen, E.C. Cho, L.V. Wang, Y. Xia, Chem. Soc. Rev. 40(2011) 44-56.
doi: 10.1039/B821763G
S.S. Xing, X.W. Zhang, L.Y. Luo, et al., Nanotechnology 29(2018) 405101.
doi: 10.1088/1361-6528/aad358
J. Kirchner, L.M. Sawicki, F. Nensa, et al., Eur. J. Nucl. Med. Mol. Imaging 46(2019) 437-445.
doi: 10.1007/s00259-018-4109-x
B.W. Lan, X.J. Li, Acad. Radiol. (2018), doi:http://dx.doi.org/10.1016/j.acra.2018.05.002.
doi: 10.1016/j.acra.2018.05.002
K.T. Butterworth, S.J. McMahon, F.J. Currell, K.M. Prise, Nanoscale 4(2012) 4830-4838.
doi: 10.1039/c2nr31227a
J.V. Jokerst, A.J. Cole, D. Van de Sompel, S.S. Gambhir, ACS Nano 6(2012) 10366-10377.
doi: 10.1021/nn304347g
T. Wang, Y. Hou, B. Bu, et al., Small 14(2018) 1800573.
doi: 10.1002/smll.v14.23
C. Zhang, W.B. Bu, D.L. Ni, et al., Angew. Chem. Int. Ed. 55(2016) 2101-2106.
doi: 10.1002/anie.201510031
K.S. Sharma, R.S. Ningthoujam, A.K. Dubey, et al., Sci. Rep. 8(2018) 14766.
doi: 10.1038/s41598-018-32934-w
G.K. Thirunavukkarasu, K. Cherukula, H. Lee, et al., Biomaterials 180(2018) 240-252.
doi: 10.1016/j.biomaterials.2018.07.028
H. Kang, H.J. Jung, D.S.H. Wong, et al., J. Am. Chem. Soc.140(2018) 5909-5913.
doi: 10.1021/jacs.8b03001
W. Shi, X.Y. Liu, C. Wei, et al., Nanoscale 7(2015) 17249-17253.
doi: 10.1039/C5NR05459A
H.D. Cai, K.A. Li, J.C. Li, et al., Small 11(2015) 4584-4593.
doi: 10.1002/smll.v11.35
Q. Gao, Y. Xing, M.L. Peng, et al., Chin. J. Chem. 35(2017)1700032.
F. Pang, R.F. Zhang, D.P. Lan, J.P. Ge, ACS Appl. Mater. Interface 10(2018) 4929-4936.
doi: 10.1021/acsami.7b17046
L. Shang, Y.H. Liang, M.Z. Li, et al., Adv. Funct. Mater. 27(2017) 1606215.
doi: 10.1002/adfm.201606215
P. Guardia, S. Nitti, M.E. Materia, et al., J. Mater. Chem. B 5(2017) 4587-4594.
doi: 10.1039/C7TB00968B
Y. Hu, J. Yang, P. Wei, et al., J. Mater. Chem. B 3(2015) 9098-9108.
J.C. Li, L.F. Zheng, H.D. Cai, et al., ACS Appl. Mater. Interface 5(2013) 10357-10366.
doi: 10.1021/am4034526
J.R. Peng, T.T. Qi, J.F. Liao, et al., Theranostics 4(2014) 678-692.
doi: 10.7150/thno.7869
D. Yan, X. Liu, G. Deng, et al., J. Colloid Interface Sci. 530(2018) 547-555.
doi: 10.1016/j.jcis.2018.07.001
C. Wang, C.J. Xu, H. Zeng, S.H. Sun, Adv. Mater. 21(2009) 3045-3052.
doi: 10.1002/adma.v21:30
H. Yu, M. Chen, P.M. Rice, et al., Nano Lett. 5(2005) 379-382.
doi: 10.1021/nl047955q
C.W. Han, T. Choksi, C. Milligan, et al., Nano Lett. 17(2017) 4576-4582.
doi: 10.1021/acs.nanolett.7b00827
W.L. Shi, H. Zeng, Y. Sahoo, et al., Nano Lett. 6(2006) 875-881.
doi: 10.1021/nl0600833
F.H. Lin, R.A. Doong, J. Colloid Interface Sci. 417(2014) 325-332.
doi: 10.1016/j.jcis.2013.11.069
Y.H. Wei, R. Klajn, A.O. Pinchuk, B.A. Grzybowski, Small 4(2008) 1635-1639.
doi: 10.1002/smll.v4:10
J. Canet-Ferrer, P. Albella, A. Ribera, J.V. Usagre, S.A. Maier, Nanoscale Horiz. 2(2017) 205-216.
doi: 10.1039/C6NH00225K
Y. Li, J.W. Zhao, W.L. You, D.H. Cheng, W.H. Ni, Nanoscale 9(2017) 3925-3933.
doi: 10.1039/C7NR00141J
M.V. Efremova, V.A. Naumenko, M. Spasova, Sci. Rep. 8(2018) 11295.
doi: 10.1038/s41598-018-29618-w
X.O. Liu, M. Atwater, J.H. Wang, Q. Huo, Colloid. Surf. B 58(2007) 3-7.
doi: 10.1016/j.colsurfb.2006.08.005
F. Yan, R.Y. Sun, Mater. Res. Bull. 57(2014) 293-299.
doi: 10.1016/j.materresbull.2014.06.012
Y. He, J.C. Liu, L.L. Luo, et al., Proc. Natl. Acad. Sci. U. S. A.115(2018) 7700-7705.
doi: 10.1073/pnas.1800262115
R. Ye, A.V. Zhukhovitskiy, R.V. Kazantsev, et al., J. Am. Chem. Soc. 140(2018) 4144-4149.
doi: 10.1021/jacs.8b01017
M. Yang, L.F. Allard, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 135(2013) 3768-3771.
doi: 10.1021/ja312646d
Y.L. Dai, Z. Yang, S.Y. Cheng, et al., Adv. Mater. 30(2018) 1704877.
doi: 10.1002/adma.v30.8
C.J. Jin, J. Han, F.Y. Chu, X.X. Wang, R. Guo, Langmuir 33(2017) 4520-4527.
doi: 10.1021/acs.langmuir.7b00640
J. Liu, Z.W. Zhao, Z.X. Ding, Z.D. Fang, F.Y. Cui, RSC Adv. 6(2016) 53080-53088.
doi: 10.1039/C6RA10929B
F. Ke, L.H. Wang, J.F. Zhu, Nanoscale 7(2015) 1201-1208.
doi: 10.1039/C4NR05421K
J.C. Cheng, S.L. Zhao, W.B. Gao, P.B. Jiang, R. Li, React. Kinet. Mech. Catal. 121(2017) 797-810.
doi: 10.1007/s11144-017-1185-z
A. Fakhri, M. Naji, J. Photochem. Photobiol. B 167(2017) 58-63.
doi: 10.1016/j.jphotobiol.2016.12.027
Y.Y. Song, H.J. Jiang, H.K. Bi, et al., ACS Omega 3(2018) 973-981.
doi: 10.1021/acsomega.7b01590
Y. Wang, H.B. Fang, Y.Z. Zheng, et al., Nanoscale 7(2018) 19118-19128.
T.Y. Lai, W.C. Lee, J. Photochem. Photobiol. A 204(2009) 148-153.
doi: 10.1016/j.jphotochem.2009.03.009
Z. Li, X.B. Pan, T.L. Wang, et al., Nanoscale Res. Lett. 8(2013) 96.
doi: 10.1186/1556-276X-8-96
X.H. Feng, S.K. Zhang, X. Lou, Colloid Surf. B 107(2013) 220-226.
doi: 10.1016/j.colsurfb.2013.02.007
L. Souza da Costa, D. Zanchet, Catal. Today 282(2017) 151-158.
doi: 10.1016/j.cattod.2016.06.056
A. Mahmood, S.M. Ramay, Y.S. Al-Zaghayer, et al., Desalin. Water Treat. 57(2015) 20069-20075.
Y.F. Chen, J. Hong, D.Y. Wu, et al., RSC Adv. 6(2016) 8336-8345.
doi: 10.1039/C5RA26172D
J.F. Zeng, L.H. Jing, Y. Hou, et al., Adv. Mater. 26(2014) 2694-2698.
doi: 10.1002/adma.201304744
R. Chauhan, J. Singh, P.R. Solanki, et al., Biochem. Eng. J. 103(2015) 103-113.
doi: 10.1016/j.bej.2015.07.002
J.C. Shen, Y. Yang, Y. Zhang, et al., Sensor. Actuat. B-Chem. 226(2016) 512-517.
doi: 10.1016/j.snb.2015.12.029
S.S. Li, W.Y. Zhou, M. Jiang, et al., Anal. Chem. 90(2018) 4569-4577.
doi: 10.1021/acs.analchem.7b04981
J. Wei, S.S. Li, Z. Guo, et al., Anal. Chem. 88(2016) 1154-1161.
doi: 10.1021/acs.analchem.5b02947
H. Zhang, X.T. Tian, Y. Shang, Y.H. Li, X.B. Yin, ACS Appl. Mater. Interface 10(2018) 28390-28398.
doi: 10.1021/acsami.8b09680
R. Zhou, P. Bagga, K. Nath, et al., Cancer Res. 78(2018) 5521-5526.
doi: 10.1158/0008-5472.CAN-17-3988
X.H. Liu, C.H. Gao, J.H. Gu, et al., ACS Appl. Mater. Interface 8(2016) 27622-27631.
doi: 10.1021/acsami.6b11918
J.Q. Xi, W.J. Wang, L.Y. Da, et al., ACS Biomater. Sci. Eng. 4(2018) 1083-1091.
doi: 10.1021/acsbiomaterials.7b00901
J. Zhu, Y.J. Lu, Y.G. Li, et al., Nanoscale 6(2014) 199-202.
doi: 10.1039/C3NR04730J
W.J. Dong, Y.S. Li, D.C. Niu, et al., Small 9(2013) 2500-2508.
doi: 10.1002/smll.v9.15
M. Felber, R. Alberto, Nanoscale 7(2015) 6653-6660.
doi: 10.1039/C5NR00269A
J. Reguera, D.J. de Aberasturi, M. Henriksen-Lacey, et al., Nanoscale 9(2017) 9467-9480.
doi: 10.1039/C7NR01406F
R.H. Jin, Z.N. Liu, Y.K. Bai, Y.S. Zhou, X. Chen, ACS Omega 3(2018) 4306-4315.
doi: 10.1021/acsomega.8b00427
S. Lee, A. Stubelius, N. Hamelmann, V. Tran, A. Almutairi, ACS Appl. Mater. Interface 10(2018) 40378-40387.
doi: 10.1021/acsami.8b08254
S.H. Jeong, J.H. Jang, H.Y. Cho, Y.B. Lee, Arch. Pharm. Res. 41(2018) 797-814.
doi: 10.1007/s12272-018-1060-0
Y. Chen, M.J. Xu, Y. Guo, et al., Nanotechnology 28(2017) 025101.
doi: 10.1088/0957-4484/28/2/025101
D.R. Liu, X.W. Li, C.L. Chen, et al., Oncol. Lett. 15(2018) 8079-8087.
S. Karamipour, M.S. Sadjadi, N. Farhadyar, Spectrochim. Acta A 148(2015) 146-155.
doi: 10.1016/j.saa.2015.03.078
Z. Jian, K.Y. Tu, Y.L. Liu, et al., Mater. Sci. Eng. C 80(2017) 88-92.
doi: 10.1016/j.msec.2017.04.044
C. Xu, B. Wang, S. Sun, J. Am. Chem. Soc. 131(2009) 4216-4217.
doi: 10.1021/ja900790v
B.H. Wu, S.H. Tang, M. Chen, N.F. Zheng, Chem. Commun. 50(2014) 174-176.
doi: 10.1039/C3CC47634K
J.F. Ren, S. Shen, Z.Q. Pang, et al., Chem. Commun. 47(2011) 11692-11694.
doi: 10.1039/c1cc15528h
X.J. Chen, G.L. Li, Q.H. Han, et al., Chemistry 23(2017) 17204-17208.
doi: 10.1002/chem.201704514
C.N. Wang, Y.Y. Wang, Y.L. Jin, et al., J. Nanosci. Nanotechnol. 15(2015) 6784-6789.
doi: 10.1166/jnn.2015.11111
X.Y. Nan, X.J. Zhang, Y.Q. Liu, et al., ACS Appl. Mater. Interface 9(2017) 9986-9995.
doi: 10.1021/acsami.6b16486
C.M. Li, T. Chen, I. Ocsoy, et al., Adv. Funct. Mater. 24(2014) 1772-1780.
doi: 10.1002/adfm.v24.12
Y. Hu, Y.Q. Zhou, N.N. Zhao, F.S. Liu, F.J. Xu, Small 12(2016) 2459-2468.
doi: 10.1002/smll.201600271
T. Suto, M. Ito, T. Uehara, et al., Int. Congress Ser. 1232(2002) 383-388.
doi: 10.1016/S0531-5131(01)00846-9
Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Mater. Des. 123(2017) 174-196.
doi: 10.1016/j.matdes.2017.03.036
O.L. Gobbo, K. Sjaastad, M.W. Radomski, Y. Volkov, A. Prina-Mello, Theranostics 5(2015) 1249-1263.
doi: 10.7150/thno.11544
M.V. Efremova, Y.A. Nalench, E. Myrovali, et al., Beilstein J. Nanotechnol. 9(2018) 2684-2699.
doi: 10.3762/bjnano.9.251
S. Klein, C. Harreiss, C. Menter, et al., ACS Appl. Mater. Interface 10(2018) 17071-17080.
doi: 10.1021/acsami.8b03660
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Yongsheng Xu , Lisha Yao , Jian Li , Yanzhao Dong , Dongyang Xie , Miaomiao Zhang , Feng Li , Yunsheng Dai , Jinli Zhang , Haiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Fanghua Zhang , Yuyan Li , Hongyan Zhang , Wendong Liu , Zhe Hao , Mingzheng Shao , Ruizhong Zhang , Xiyan Li , Libing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971