Citation: Li Li, Chen Qi, Xiong Xiaonan, Zhang Chuang, Qian Jingjing, Shi Jie, An Qiong, Zhang Ming. Synthesis of polysubstituted pyrroles via a gold(Ⅰ)-catalyzed tandem three-component reaction at room temperature[J]. Chinese Chemical Letters, ;2018, 29(12): 1893-1896. doi: 10.1016/j.cclet.2018.09.004 shu

Synthesis of polysubstituted pyrroles via a gold(Ⅰ)-catalyzed tandem three-component reaction at room temperature

    * Corresponding authors.
    E-mail addresses: qan@njmu.edu.cn (Q. An), mingzhang@njmu.edu.cn (M. Zhang)
  • Received Date: 16 July 2018
    Revised Date: 16 August 2018
    Accepted Date: 6 September 2018
    Available Online: 8 December 2018

Figures(5)

  • A gold(Ⅰ)-catalyzed three-component reaction of β-nitrostyrenes with 1,3-dicarbonyl compounds and primary amines to form polysubstituted pyrroles has been developed at room temperature in ethanol. The key advantages of the three-component reaction are the mild reaction conditions and environmentally safer solvent.
  • 加载中
    1. [1]

      (a) V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, P. Sharma, RSC Adv. 5 (2015) 15233-15266;
      (b) S.S. Gholap, Eur. J. Med. Chem. 110 (2016) 13-31;
      (c) C. Wu, W. Wang, L. Fang, W. Su, Chin. Chem. Lett. 29 (2018) 1105-1112.

    2. [2]

      (a) D.J. Ramón, M. Yus, Angew. Chem. Int. Ed. 44 (2005) 1602-1634;
      (b) A. Dömling, Chem. Rev. 106 (2006) 17-89;
      (c) A. Dondoni, A. Massi, Acc. Chem. Res. 39 (2006) 451-463;
      (d) J. Yu, F. Shi, L.Z. Gong, Acc. Chem. Res. 44 (2011) 1156-1171;
      (e) N.N. Zhou, H.T. Zhu, D.S. Yang, Z.H. Guan, Org. Biomol. Chem. 14 (2016) 7136-7149;
      (f) Y.N. Gao, M. Shi, Chin. Chem. Lett. 28 (2017) 493-502;
      (g) Xie J, Jin H, A.S.K. Hashmi, Chem. Soc. Rev. 46 (2017) 5193-5203;
      (h) W.B. Lin, M. Li, L. Fang, C.F. Chen, Chin. Chem. Lett. 29 (2018) 40-46;
      (i) P. Xu, W. Li, J. Xie, C. Zhu, Acc. Chem. Res. 51 (2018) 484-495.

    3. [3]

      A. Hantzsch, Ber. Dtsch. Chem. Ges. 23(1890) 1474-1476.
       

    4. [4]

      L. Knorr, Ber. Dtsch. Chem. Ges. 17(1884) 1635-1642.
       

    5. [5]

      (a) X.Y. Zhang, Z.W. Yang, Z. Chen, et al., J. Org. Chem. 81 (2016) 1778-1785;
      (b) K. Li, J. You, J. Org. Chem. 81 (2016) 2327-2339;
      (c) M. Yousuf, S. Adhikari, Org. Lett. 19 (2017) 2214-2217.

    6. [6]

      (a) F. Shi, W. Tan, R.Y. Zhu, G.J. Xing, S.J. Tu, Adv. Synth. Catal. 355 (2013) 1605-1622;
      (b) W. Dai, H. Lu, X. Li, F. Shi, S.J. Tu, Chem. Eur. J. 20 (2014) 11382-11389;
      (c) C.S. Wang, R.Y. Zhu, J. Zheng, F. Shi, S.J. Tu, J. Org. Chem. 80 (2015) 512-520;
      (d) W. Dai, X.L. Jiang, J.Y. Tao, F. Shi, J. Org. Chem. 81 (2016) 185-192;
      (e) Y.M. Wang, H.H. Zhang, C. Li, T. Fan, F. Shi, Chem. Commun. 52 (2016) 1804-1807;
      (f) X.Q. Mou, Z.L. Xu, L. Xu, et al., Org. Lett. 18 (2016) 4032-4035;
      (g) T.Y. Ye, M. Selvaraju, C.M. Sun, Org. Lett. 19 (2017) 3103-3106;
      (h) P. Wu, Ho. Gao, J. Sun, C.G. Yan, Chin. Chem. Lett. 28 (2017) 329-332.

    7. [7]

      (a) S.Goyal, J.K.Patel, M.Gangar, K.Kumar, V.A.Nair, RSCAdv.5 (2015)3187-3195;
      (b)N.C.Jadhav, P.B.Jagadhane, H.V.Patile, V.N.Telvekar, Tetrahedron.Lett.54 (2013) 3019-3021;
      (c) C.C. Silveira, S.R. Mendes, G.M. Martins, S.C. Schloesser, T.S. Kaufman, Tetrahedron 69 (2013) 9076-9085;
      (d) S. Sarkar, K. Bera, S. Maiti, S. Biswas, U. Jana, Synth. Commun. 43 (2013) 1563-1570.

    8. [8]

      T.V. Kumar, C.R.K. Rao, K. Mukkanti, P.S. Mainkar, Asian J. Chem. 27(2015) 1457-1461.  doi: 10.14233/ajchem

    9. [9]

      (a) A.S.K. Hashmi, Chem. Rev. 107 (2007) 3180-3211;
      (b) A. Fürstner, P.W. Davies, Angew. Chem. Int. Ed. 46 (2007) 3410-3449;
      (c) E. Jime'nez-Nu'ñez, A.M. Echavarren, Chem. Rev. 108 (2008) 3326-3350;
      (d) G. Dyker, Angew. Chem. Int. Ed. 39 (2000) 4237-4239;
      (e) Angew. Chem. Int. Ed. 49 (2010) 5232-5241;
      (f) L. Zhang, Acc. Chem. Res. 47 (2014) 877-888;
      (g) J. Xie, C. Pan, A. Abdukadera, C. Zhu, Chem. Soc. Rev. 43 (2014) 5245-5256.

    10. [10]

      (a) C. Wu, Z.W. Liang, Y.Y. Xu, W.M. He, J.N. Xiang, Chin. Chem. Lett. 24 (2013) 1064-1066;
      (b) H. Yi, A.W. Lei, Chin. Chem. Lett. 26 (226) (2015);
      (c) X.X. Di, J. Zhao, Y. Yu, et al., Chin. Chem. Lett. 27 (2016) 1567-1571;
      (d) F. Zhang, Q. Lai, X. Shi, Z. Song, Chin. Chem. Lett. (2018), doi: http://dx.doi.org/10.1016/j.cclet.2018.05.036.

    11. [11]

      (a) D. Wang, R. Cai, S. Sharma, et al., J. Am. Chem. Soc. 134 (2012) 9012-9019;
      (b) D.J. Gorin, B.D. Sherry, F.D. Toste, Chem. Rev. 108 (2008) 3351-3378;
      (c) B. Chandrasekhar, S. Ahn, J.S. Ryu, J. Org. Chem. 81 (2016) 6740-6749.

    12. [12]

      (a) D.J. Gorin, F.D. Toste, Nature 446 (2007) 395-403.

    13. [13]

      (b) G. Revial, S. Lim, B. Viossat, et al., J. Org. Chem. 65 (2000) 4593-4600;
      (c) A. Palmieri, S. Gabrielli, C. Cimarelli, R. Ballini, Green Chem.13 (2011) 3333-3336;
      (d) A.S.K. Hashmi, Acc. Chem. Res. 47 (2014) 864-876.

    14. [14]

      M. Zhang, A. Abdukader, Y. Fu, C. Zhu, Molecules 17(2012) 2812-2822.  doi: 10.3390/molecules17032812

    15. [15]

      A. Abdukader, Q. Xue, A. Lin, et al., Tetrahedron. Lett. 54(2013) 5898-5900.  doi: 10.1016/j.tetlet.2013.08.100

  • 加载中
    1. [1]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    2. [2]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    3. [3]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    6. [6]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    7. [7]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    8. [8]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    9. [9]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    10. [10]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    11. [11]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    12. [12]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    13. [13]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    16. [16]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    17. [17]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    18. [18]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    19. [19]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(9)
  • Abstract views(971)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return