Fluorescent quantum dots for microbial imaging
- Corresponding author: Wu Fu-Gen, wufg@seu.edu.cn
Citation:
Gao Ge, Jiang Yao-Wen, Sun Wei, Wu Fu-Gen. Fluorescent quantum dots for microbial imaging[J]. Chinese Chemical Letters,
;2018, 29(10): 1475-1485.
doi:
10.1016/j.cclet.2018.07.004
R. Alford, H.M. Simpson, J. Duberman, et al., Mol. Imaging 8(2009) 341-354.
Y. Yu, C. Feng, Y.N. Hong, et al., Adv. Mater. 23(2011) 3298-3302.
doi: 10.1002/adma.201101714
Z.H. Lei, P. Yue, X.L. Wang, et al., Chem. Commun. 53(2017) 10938-10941.
doi: 10.1039/C7CC06031A
H.H. He, Z.W. Ye, Y. Zheng, et al., Chem. Commun. 54(2018) 2842-2845.
doi: 10.1039/C7CC08886H
H.H. He, Z.W. Ye, Y. Xiao, et al., Anal. Chem. 90(2018) 2164-2169.
doi: 10.1021/acs.analchem.7b04510
J. Yao, M. Yang, Y.X. Duan, Chem. Rev. 114(2014) 6130-6178.
doi: 10.1021/cr200359p
L.L. Song, Z.H. Lei, B.Y. Zhang, et al., Anal. Methods 6(2014) 7597-7600.
doi: 10.1039/C4AY01729C
G. Miesenböck, D.A. De Angelis, J.E. Rothman, Nature 394(1998) 192-195.
doi: 10.1038/28190
R.N. Dsouza, U. Pischel, W.M. Nau, Chem. Rev. 111(2011) 7941-7980.
doi: 10.1021/cr200213s
L.J. Jiao, C.J. Yu, T. Uppal, et al., Org. Biomol. Chem. 8(2010) 2517-2519.
doi: 10.1039/c001068e
J.K. Jaiswal, S.M. Simon, Trends Cell Biol. 14(2004) 497-504.
doi: 10.1016/j.tcb.2004.07.012
L. Li, T.J. Daou, I. Texier, et al., Chem. Mater. 21(2009) 2422-2429.
doi: 10.1021/cm900103b
H. Li, W.Q. Kong, J. Liu, et al., Carbon 91(2015) 66-75.
doi: 10.1016/j.carbon.2015.04.032
A. Gupta, M.T. Swihart, H. Wiggers, Adv. Funct. Mater. 19(2009) 696-703.
doi: 10.1002/adfm.v19:5
C.F. Wu, C. Szymanski, Z. Cain, J. McNeill, J. Am. Chem. Soc.129(2007) 12904-12905.
doi: 10.1021/ja074590d
R. Freeman, T. Finder, I. Willner, Angew. Chem. Int. Ed. 48(2009) 7818-7821.
Y.M. Yang, W.Q. Kong, H. Li, et al., ACS Appl. Mater. Interfaces 7(2015) 27324-27330.
doi: 10.1021/acsami.5b08782
M.A. Walling, J.A. Novak, J.R.E. Shepard, Int. J. Mol. Sci. 10(2009) 441-491.
doi: 10.3390/ijms10020441
K.D. Wegner, N. Hildebrandt, Chem. Soc. Rev. 44(2015) 4792-4834.
doi: 10.1039/C4CS00532E
A.M. Smith, H.W. Duan, A.M. Mohs, S.M. Nie, Adv. Drug Deliv. Rev. 60(2008) 1226-1240.
doi: 10.1016/j.addr.2008.03.015
P. Zrazhevskiy, M. Sena, X.H. Gao, Chem. Soc. Rev. 39(2010) 4326-4354.
doi: 10.1039/b915139g
Y.C. Wang, R. Hu, G.M. Lin, I. Roy, K.T. Yong, ACS Appl. Mater. Interfaces 5(2013) 2786-2799.
doi: 10.1021/am302030a
B. Zhang, R. Hu, Y.C. Wang, et al., RSC Adv. 4(2014) 13805-13816.
doi: 10.1039/C4RA00288A
P.G. Luo, S. Sahu, S.T. Yang, et al., J. Mater. Chem. B 1(2013) 2116-2127.
doi: 10.1039/c3tb00018d
X.Q. Wu, J. Zhao, S.J. Guo, et al., Nanoscale 8(2016) 17314-17321.
doi: 10.1039/C6NR05864G
J.H. Warner, A. Hoshino, K. Yamamoto, R.D. Tilley, Angew. Chem. Int. Ed. 44(2005) 4550-4554.
F.M. Ye, C.F. Wu, Y.H. Jin, et al., J. Am. Chem. Soc. 133(2011) 8146-8149.
doi: 10.1021/ja202945g
G. Gao, Y.W. Jiang, J.J. Yang, F.G. Wu, Nanoscale 9(2017) 18368-18378.
doi: 10.1039/C7NR06764J
X.W. Hua, Y.W. Bao, Z. Chen, F.G. Wu, Nanoscale 9(2017) 10948-10960.
doi: 10.1039/C7NR03658B
J.J. Yang, G. Gao, X.D. Zhang, et al., Nanoscale 9(2017) 15441-15452.
doi: 10.1039/C7NR05613C
L.Q. Wang, X.Y. Wang, A. Bhirde, et al., Adv. Healthcare Mater. 3(2014) 1203-1209.
doi: 10.1002/adhm.v3.8
X.W. Hua, Y.W. Bao, F.G. Wu, ACS Appl. Mater. Interfaces 10(2018) 10664-10677.
doi: 10.1021/acsami.7b19549
G. Gao, Y.W. Jiang, H.R. Jia, J.J. Yang, F.G. Wu, Carbon 134(2018) 232-243.
doi: 10.1016/j.carbon.2018.02.063
Z.H. Kang, Y. Liu, S.T. Lee, Nanoscale 3(2011) 777-791.
doi: 10.1039/C0NR00559B
B.F.P. McVey, R.D. Tilley, Acc. Chem. Res. 47(2014) 3045-3051.
doi: 10.1021/ar500215v
M. Dasog, K. Bader, J.G.C. Veinot, Chem. Mater. 27(2015) 1153-1156.
doi: 10.1021/acs.chemmater.5b00115
L.P. Fernando, P.K. Kandel, J.B. Yu, et al., Biomacromolecules 11(2010) 2675-2682.
doi: 10.1021/bm1007103
C.F. Wu, T. Schneider, M. Zeigler, et al., J. Am. Chem. Soc. 132(2010) 15410-15417.
doi: 10.1021/ja107196s
G. Seisenberger, M.U. Ried, T. Endreβ, et al., Science 294(2001) 1929-1932.
doi: 10.1126/science.1064103
A.G. White, N. Fu, W.M. Leevy, et al., Bioconjugate Chem. 21(2010) 1297-1304.
doi: 10.1021/bc1000998
S. Ascioglu, J.H. Rex, B. de Pauw, et al., Clin. Infect. Dis. 34(2002) 7-14.
doi: 10.1086/323335
J.Y. Chen, X.M. Xu, Z.M. Huang, et al., Chem. Commun. 54(2018) 291-294.
doi: 10.1039/C7CC08403J
B. Manicassamy, S. Manicassamy, A. Belicha-Villanueva, et al., Proc. Natl. Acad. Sci. U. S. A. 107(2010) 11531-11536.
doi: 10.1073/pnas.0914994107
X.P. Li, D.L. Lu, Z.H. Sheng, et al., Talanta 100(2012) 1-6.
doi: 10.1016/j.talanta.2012.08.041
S.L. Liu, Z.G. Wang, Z.L. Zhang, D.W. Pang, Chem. Soc. Rev. 45(2016) 1211-1224.
doi: 10.1039/C5CS00657K
E.L. Bentzen, F. House, T.J. Utley, et al., Nano Lett. 5(2005) 591-595.
doi: 10.1021/nl048073u
A. Agrawal, R.A. Tripp, L.J. Anderson, S.M. Nie, J. Virol. 79(2005) 8625-8628.
doi: 10.1128/JVI.79.13.8625-8628.2005
I.L. Medintz, K.E. Sapsford, J.H. Konnert, et al., Langmuir 21(2005) 5501-5510.
doi: 10.1021/la0468287
K.I. Joo, Y.N. Lei, C.L. Lee, et al., ACS Nano 2(2008) 1553-1562.
doi: 10.1021/nn8002136
S.L. Liu, Z.Q. Tian, Z.L. Zhang, et al., Biomaterials 33(2012) 7828-7833.
doi: 10.1016/j.biomaterials.2012.07.026
K.I. Joo, Y. Fang, Y.R. Liu, et al., ACS Nano 5(2011) 3523-3535.
doi: 10.1021/nn102651p
H.S. Han, N.K. Devaraj, J.Lee, et al., J. Am. Chem. Soc. 132(2010) 7838-7839.
doi: 10.1021/ja101677r
A. Bernardin, A. Cazet, L. Guyon, et al., Bioconjugate Chem. 21(2010) 583-588.
doi: 10.1021/bc900564w
W.R. Algar, D.E. Prasuhn, M.H. Stewart, et al., Bioconjugate Chem. 22(2011) 825-858.
doi: 10.1021/bc200065z
M.A. Bruckman, G. Kaur, L.A. Lee, et al., ChemBioChem 9(2008) 519-523.
J. Hao, L.L. Huang, R. Zhang, H.Z. Wang, H.Y. Xie, Anal. Chem. 84(2012) 8364-8370.
doi: 10.1021/ac301918t
P.F. Zhang, S.H. Liu, D.Y. Gao, et al., J. Am. Chem. Soc. 134(2012) 8388-8391.
doi: 10.1021/ja302367s
Y. Zhang, X.L. Ke, Z.H. Zheng, et al., ACS Nano 7(2013) 3896-3904.
doi: 10.1021/nn305189n
L. Wen, Y. Lin, Z.H. Zheng, et al., Biomaterials 35(2014) 2295-2301.
doi: 10.1016/j.biomaterials.2013.11.069
P. Zhou, Z.H. Zheng, W. Lu, et al., Angew. Chem. Int. Ed. 51(2012) 670-674.
doi: 10.1002/anie.201105701
B.H. Huang, Y. Lin, Z.L. Zhang, et al., ACS Chem. Biol. 7(2012) 683-688.
doi: 10.1021/cb2001878
L.L. Huang, P. Zhou, H.Z. Wang, et al., Chem. Commun. 48(2012) 2424-2426.
doi: 10.1039/c2cc17069h
F.X. Zhang, Z.H. Zheng, S.L. Liu, et al., Biomaterials 34(2013) 7506-7518.
doi: 10.1016/j.biomaterials.2013.06.030
L.L. Huang, G.H. Lu, J. Hao, et al., Anal. Chem. 85(2013) 5263-5270.
doi: 10.1021/ac4008144
K. Luo, S. Li, M. Xie, et al., Biochem. Biophys. Res. Commun. 394(2010) 493-497.
doi: 10.1016/j.bbrc.2010.02.159
F. Pinaud, S. Clarke, A. Sittner, M. Dahan, Nat. Methods 7(2010) 275-285.
doi: 10.1038/nmeth.1444
D. Cheng, M.Q. Yu, F. Fu, et al., Anal. Chem. 88(2016) 820-825.
doi: 10.1021/acs.analchem.5b03320
E.G. Zhao, Y.N. Hong, S.J. Chen, et al., Adv. Healthcare Mater. 3(2014) 88-96.
doi: 10.1002/adhm.v3.1
H.Y. Wang, X.W. Hua, H.R. Jia, et al., ACS Biomater. Sci. Eng. 2(2016) 987-997.
doi: 10.1021/acsbiomaterials.6b00130
H.R. Jia, Y.X. Zhu, Z. Chen, F.G. Wu, ACS Appl. Mater. Interfaces 9(2017) 15943-15951.
doi: 10.1021/acsami.7b02562
M.D. Hirschey, Y.J. Han, G.D. Stucky, A. Butler, J. Biol. Inorg. Chem. 11(2006) 663-669.
doi: 10.1007/s00775-006-0116-7
C.C. Mi, Y.Y. Wang, J.P. Zhang, et al., J. Biotechnol. 153(2011) 125-132.
doi: 10.1016/j.jbiotec.2011.03.014
Y. Li, Y.Z. Zheng, D.K. Zhang, et al., Chin. Chem. Lett. 28(2017) 184-188.
doi: 10.1016/j.cclet.2016.07.020
M.A. El-Sayed, Acc. Chem. Res. 37(2004) 326-333.
doi: 10.1021/ar020204f
Q.S. Wang, F.Y. Ye, T.T. Fang, et al., J. Colloid Interface Sci. 355(2011) 9-14.
doi: 10.1016/j.jcis.2010.11.035
X. Michalet, F.F. Pinaud, L.A. Bentolila, et al., Science 307(2005) 538-544.
doi: 10.1126/science.1104274
T. Jamieson, R. Bakhshi, D. Petrova, et al., Biomaterials 28(2007) 4717-4732.
doi: 10.1016/j.biomaterials.2007.07.014
Y.P. Du, B. Xu, T. Fu, et al., J. Am. Chem. Soc. 132(2010) 1470-1471.
doi: 10.1021/ja909490r
X. Michalet, F. Pinaud, T.D. Lacoste, et al., Single Mol. 2(2001) 261-276.
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 5(2008) 763-775.
doi: 10.1038/nmeth.1248
J.A. Kloepfer, R.E. Mielke, J.L. Nadeau, Appl. Environ. Microbiol. 71(2005) 2548-2557.
doi: 10.1128/AEM.71.5.2548-2557.2005
Z.S. Lu, C.M. Li, H.F. Bao, et al., Langmuir 24(2008) 5445-5452.
doi: 10.1021/la704075r
X.H. Xue, J. Pan, H.M. Xie, J.H. Wang, S. Zhang, Talanta 77(2009) 1808-1813.
doi: 10.1016/j.talanta.2008.10.025
Z.Y. Yan, J. Qian, Y.Q. Gu, et al., Mater. Res. Express 1(2014) 015401.
doi: 10.1088/2053-1591/1/1/015401
H.N. Abdelhamid, H.F. Wu, Spectrochim. Acta A 188(2018) 50-56.
doi: 10.1016/j.saa.2017.06.047
N.I. Chalmers, R.J. Palmer, L. Du-Thumm, et al., Appl. Environ. Microbiol. 73(2007) 630-636.
doi: 10.1128/AEM.02164-06
F. Aldeek, R. Schneider, M.P. Fontaine-Aupart, et al., Appl. Environ. Microbiol. 79(2013) 1400-1402.
doi: 10.1128/AEM.03054-12
X.N. Li, Y.C. Yeh, K. Giri, et al., Chem. Commun. 51(2015) 282-285.
doi: 10.1039/C4CC07737G
W.M. Leevy, T.N. Lambert, J.R. Johnson, J. Morris, B.D. Smith, Chem. Commun. 20(2008) 2331-2333.
F. Aldeek, C. Mustin, L. Balan, et al., Biomaterials 32(2011) 5459-5470.
doi: 10.1016/j.biomaterials.2011.04.019
X.L. Huang, F. Zhang, L. Zhu, et al., ACS Nano 7(2013) 5684-5693.
doi: 10.1021/nn401911k
X.Y. Xu, R. Ray, Y.L. Gu, et al., J. Am. Chem. Soc. 126(2004) 12736-12737.
doi: 10.1021/ja040082h
S.Y. Lim, W. Shen, Z.Q. Gao, Chem. Soc. Rev. 44(2015) 362-381.
doi: 10.1039/C4CS00269E
Y.B. Song, S.J. Zhu, B. Yang, RSC Adv. 4(2014) 27184-27200.
doi: 10.1039/c3ra47994c
N. Zhou, S.J. Zhu, S. Maharjan, et al., RSC Adv. 4(2014) 62086-62095.
Y.B. Song, S.J. Zhu, S.T. Zhang, et al., J. Mater. Chem. C 3(2015) 5976-5984.
doi: 10.1039/C5TC00813A
M.C. Rong, K.X. Zhang, Y.R. Wang, X. Chen, Chin. Chem. Lett. 28(2017) 1119-1124.
doi: 10.1016/j.cclet.2016.12.009
S.J. Zhu, Y.B. Song, X.H. Zhao, et al., Nano Res. 8(2015) 355-381.
doi: 10.1007/s12274-014-0644-3
J.H. Shen, Y.H. Zhu, X.L. Yang, C.Z. Li, Chem. Commun. 48(2012) 3686-3699.
doi: 10.1039/c2cc00110a
S.J. Zhu, X.H. Zhao, Y.B. Song, S.Y. Lu, B. Yang, Nano Today 11(2016) 128-132.
doi: 10.1016/j.nantod.2015.09.002
J.J. Liu, D.W. Li, K. Zhang, et al., Small 14(2018) 1703919.
doi: 10.1002/smll.201703919
B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, et al., Biomaterials 35(2014) 4428-4435.
doi: 10.1016/j.biomaterials.2014.02.014
B.S.B. Kasibabu, S.L. D'souza, S. Jha, et al., Anal. Methods 7(2015) 2373-2378.
doi: 10.1039/C4AY02737J
V.N. Mehta, S. Jha, S.K. Kailasa, Mater. Sci. Eng. C 38(2014) 20-27.
doi: 10.1016/j.msec.2014.01.038
K.M. Tripathi, A.K. Sonker, S.K. Sonkar, S. Sarkar, RSC Adv. 4(2014) 30100-30107.
doi: 10.1039/C4RA03720K
C.I. Weng, H.T. Chang, C.H. Lin, et al., Biosens. Bioelectron. 68(2015) 1-6.
doi: 10.1016/j.bios.2014.12.028
N. Wang, H. Fan, J.C. Sun, et al., Carbon 109(2016) 141-148.
doi: 10.1016/j.carbon.2016.08.004
N. Wang, Y.T. Wang, T.T. Guo, et al., Biosens. Bioelectron. 85(2016) 68-75.
doi: 10.1016/j.bios.2016.04.089
Y.Q. Zhang, X.Y. Liu, Y. Fan, et al., Nanoscale 8(2016) 15281-15287.
doi: 10.1039/C6NR03125K
A. Sachdev, I. Matai, S.U. Kumar, et al., RSC Adv. 3(2013) 16958-16961.
doi: 10.1039/c3ra42415d
M.M.F. Baig, Y.C. Chen, J. Colloid Interface Sci. 501(2017) 341-349.
doi: 10.1016/j.jcis.2017.04.045
F.M. Lin, C.C. Li, L. Dong, D.G. Fu, Z. Chen, Nanoscale 9(2017) 9056-9064.
doi: 10.1039/C7NR01975K
A. Pramanik, S. Jones, F. Pedraza, et al., ACS Omega 2(2017) 554-562.
doi: 10.1021/acsomega.6b00518
J.J. Yang, X.D. Zhang, Y.H. Ma, et al., ACS Appl. Mater. Interfaces 8(2016) 32170-32181.
doi: 10.1021/acsami.6b10398
Y.X. Song, H. Li, F. Lu, et al., J. Mater. Chem. B 5(2017) 6008-6015.
doi: 10.1039/C7TB01092C
X.W. Hua, Y.W. Bao, H.Y. Wang, Z. Chen, F.G. Wu, Nanoscale 9(2017) 2150-2161.
doi: 10.1039/C6NR06558A
F. Lu, Y.X. Song, H. Huang, et al., Carbon 120(2017) 95-102.
doi: 10.1016/j.carbon.2017.05.039
M. Ritenberg, S. Nandi, S. Kolusheva, et al., ACS Chem. Biol. 11(2016) 1265-1270.
doi: 10.1021/acschembio.5b01000
F.M. Lin, C.C. Li, Z. Chen, Front. Microbiol. 9(2018) 259.
doi: 10.3389/fmicb.2018.00259
G.F. Grom, D.J. Lockwood, J.P. McCaffrey, et al., Nature 407(2000) 358-361.
doi: 10.1038/35030062
X.K. Chen, X.D. Zhang, L.Y. Xia, et al., Nano Lett. 18(2018) 1159-1167.
doi: 10.1021/acs.nanolett.7b04700
J.G. Fan, X.J. Tang, Y.P. Zhao, Nanotechnology 15(2004) 501-504.
doi: 10.1088/0957-4484/15/5/017
V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Adv. Mater. 21(2009) 2681-2702.
doi: 10.1002/adma.200803754
M. Cavarroc, M. Mikikian, G. Perrier, L. Boufendi, Appl. Phys. Lett. 89(2006) 013107.
doi: 10.1063/1.2219395
F. Erogbogbo, K.T. Yong, I. Roy, et al., ACS Nano 2(2008) 873-878.
doi: 10.1021/nn700319z
F. Erogbogbo, K.T. Yong, R. Hu, et al., ACS Nano 4(2010) 5131-5138.
doi: 10.1021/nn101016f
H. Sugimoto, M. Fujii, Y. Fukuda, K. Imakita, K. Akamatsu, Nanoscale 6(2014) 122-126.
doi: 10.1039/C3NR03863G
Y.X. Zhang, X. Han, J.M. Zhang, et al., Nanoscale 4(2012) 7760-7765.
doi: 10.1039/c2nr32375c
R. Ban, F.F. Zheng, J.R. Zhang, Anal. Methods 7(2015) 1732-1737.
doi: 10.1039/C4AY02729A
Y. He, C.H. Fan, S.T. Lee, Nano Today 5(2010) 282-295.
doi: 10.1016/j.nantod.2010.06.008
E.C. Cho, S. Park, X.J. Hao, et al., Nanotechnology 19(2008) 245201.
doi: 10.1088/0957-4484/19/24/245201
A. Shiohara, S. Prabakar, A. Faramus, et al., Nanoscale 3(2011) 3364-3370.
doi: 10.1039/c1nr10458f
Y. He, Y.L. Zhong, F. Peng, et al., J. Am. Chem. Soc. 133(2011) 14192-14195.
doi: 10.1021/ja2048804
J.J. Li, J.J. Zhu, Analyst 138(2013) 2506-2515.
doi: 10.1039/c3an36705c
K. Bagga, A. Barchanski, R. Intartaglia, et al., Laser Phys. Lett. 10(2013) 065603.
doi: 10.1088/1612-2011/10/6/065603
S. Chinnathambi, S. Chen, S. Ganesan, et al., Adv. Healthcare Mater. 3(2014) 10-29.
doi: 10.1002/adhm.v3.1
X.D. Zhang, X.K. Chen, J.J. Yang, et al., Adv. Funct. Mater. 26(2016) 5958-5970.
doi: 10.1002/adfm.v26.33
C.F. Wu, D.T. Chiu, Angew. Chem. Int. Ed. 52(2013) 3086-3109.
doi: 10.1002/anie.201205133
C.F. Wu, B. Bull, C. Szymanski, K. Christensen, J. McNeill, ACS Nano 2(2008) 2415-2423.
doi: 10.1021/nn800590n
Y.H. Chan, C.F. Wu, F.M. Ye, et al., Anal. Chem. 83(2011) 1448-1455.
doi: 10.1021/ac103140x
X.L. Feng, G.M. Yang, L.B. Liu, et al., Adv. Mater. 24(2012) 637-641.
doi: 10.1002/adma.201102026
M. Massey, M. Wu, E.M. Conroy, W.R. Algar, Curr. Opin. Biotechnol. 34(2015) 30-40.
doi: 10.1016/j.copbio.2014.11.006
X.B. Zhou, H. Liang, P.F. Jiang, et al., Adv. Sci. 3(2016) 1500155.
doi: 10.1002/advs.201500155
J.Y. Sun, H. Mei, S.F. Wang, F. Gao, Anal. Chem. 88(2016) 7372-7377.
doi: 10.1021/acs.analchem.6b01929
C.S. Ke, C.C. Fang, J.Y. Yan, et al., ACS Nano 11(2017) 3166-3177.
doi: 10.1021/acsnano.7b00215
K. Sun, Y.K. Yang, H. Zhou, et al., ACS Nano 12(2018) 5176-5184.
doi: 10.1021/acsnano.8b02188
Y.H. Chan, P.J. Wu, Part. Part. Syst. Charact. 32(2015) 11-28.
doi: 10.1002/ppsc.201400123
H. Chong, C.Y. Nie, C.L. Zhu, et al., Langmuir 28(2012) 2091-2098.
doi: 10.1021/la203832h
Y. Wan, L.B. Zheng, Y. Sun, D. Zhang, J. Mater. Chem. B 2(2014) 4818-4825.
doi: 10.1039/C4TB00288A
X.J. Zhang, J.B. Yu, Y. Rong, et al., Chem. Sci. 4(2013) 2143-2151.
doi: 10.1039/c3sc50222h
P.J. Wu, S.Y. Kuo, Y.C. Huang, C.P. Chen, Y.H. Chan, Anal. Chem. 86(2014) 4831-4839.
doi: 10.1021/ac404237q
Y.H. Jin, F.M. Ye, M. Zeigler, C.F. Wu, D.T. Chiu, ACS Nano 5(2011) 1468-1475.
doi: 10.1021/nn103304m
J.B. Yu, C.F. Wu, X.J. Zhang, et al., Adv. Mater. 24(2012) 3498-3504.
doi: 10.1002/adma.201201245
Y. Rong, C.F. Wu, J.B. Yu, et al., ACS Nano 7(2013) 376-384.
doi: 10.1021/nn304376z
M. Aribandi, V.A. McCoy, C. Bazan Ⅲ, RadioGraphics 27(2007) 1283-1296.
doi: 10.1148/rg.275065189
D. Jiménez-Fernández, M. Montes-Borrego, J.A. Navas-Cortés, R.M. Jiménez-Díaz, B.B. Landa, Appl. Soil Ecol. 46(2010) 372-382.
doi: 10.1016/j.apsoil.2010.10.001
N. Rispail, L. De Matteis, R. Santos, et al., ACS Appl. Mater. Interfaces 6(2014) 9100-9110.
doi: 10.1021/am501029g
M.D. Whiteside, K.K. Treseder, P.R. Atsatt, Ecology 90(2009) 100-108.
doi: 10.1890/07-2115.1
M.D. Whiteside, M.A. Digman, E. Gratton, K.K. Treseder, Soil Biol. Biochem. 55(2012) 7-13.
doi: 10.1016/j.soilbio.2012.06.001
D.P.L.A. Tenório, C.G. Andrade, P.E. Cabral Filho, et al., J. Photochem. Photobiol. B 142(2015) 237-243.
doi: 10.1016/j.jphotobiol.2014.11.010
V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, Sens. Actuator B 213(2015) 434-443.
doi: 10.1016/j.snb.2015.02.104
B.S.B. Kasibabu, S.L. D'souza, S. Jha, S.K. Kailasa, J. Fluoresc. 25(2015) 803-810.
doi: 10.1007/s10895-015-1595-0
X.Z. Jin, X.B. Sun, G. Chen, et al., Carbon 81(2015) 388-395.
doi: 10.1016/j.carbon.2014.09.071
S.N. Baker, G.A. Baker, Angew. Chem. Int. Ed. 49(2010) 6726-6744.
doi: 10.1002/anie.200906623
S.Y. Lu, X.H. Zhao, S.J. Zhu, Y.B. Song, B. Yang, Nanoscale 6(2014) 13939-13944.
doi: 10.1039/C4NR03965C
J. Wang, F. Peng, Y.M. Lu, et al., Adv. Optical Mater. 3(2015) 103-111.
doi: 10.1002/adom.v3.1
S.Y. Lu, R.D. Cong, S.J. Zhu, et al., ACS Appl. Mater. Interfaces 8(2016) 4062-4068.
doi: 10.1021/acsami.5b11579
J.J. Liu, S.Y. Lu, Q.L. Tang, et al., Nanoscale 9(2017) 7135-7142.
doi: 10.1039/C7NR02128C
S.Y. Tao, Y.B. Song, S.J. Zhu, J.R. Shao, B. Yang, Polymer 116(2017) 472-478.
doi: 10.1016/j.polymer.2017.02.039
C. Sun, Y. Zhang, K. Sun, et al., Nanoscale 7(2015) 12045-12050.
doi: 10.1039/C5NR03014E
N.A. Travlou, D.A. Giannakoudakis, M. Algarra, et al., Carbon 135(2018) 104-111.
doi: 10.1016/j.carbon.2018.04.018
W. Song, H.J. Zhang, Y.H. Liu, C.L. Ren, H.L. Chen, Chin. Chem. Lett. 28(2017) 1675-1680.
doi: 10.1016/j.cclet.2017.05.001
Biao Huang , Tao Tang , Fushou Liu , Shi-Hui Chen , Zhi-Ling Zhang , Mingxi Zhang , Ran Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Husitu Lin , Shuangkun Zhang , Dianfa Zhao , Yongkang Wang , Wei Liu , Fan Yang , Jianjun Liu , Dongpeng Yan , Zhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Peide Zhu , Yangjia Liu , Yaoyao Tang , Siqi Zhu , Xinyang Liu , Lei Yin , Quan Liu , Zhiqiang Yu , Quan Xu , Dixian Luo , Juncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Lijia Xu , Tong Zhong , Wei Zhao , Bing Yao , Lin Ding , Huangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760
Fengkai Zou , Borui Su , Han Leng , Nini Xin , Shichao Jiang , Dan Wei , Mei Yang , Youhua Wang , Hongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
Fenglin Jiang , Anan Liu , Qian Wei , Youcai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217