Citation: Liu Yujing, He Kai, Yuan Wentao, Jin Xinyi, Liang Tao, Wang Yong, L. Xin Huolin, Chen Hongzheng, Gao Chao, Li Hanying. Visualizing the toughening origins of gel-grown calcite single-crystal composites[J]. Chinese Chemical Letters, ;2018, 29(11): 1666-1670. doi: 10.1016/j.cclet.2018.05.044 shu

Visualizing the toughening origins of gel-grown calcite single-crystal composites

  • Corresponding author: Li Hanying, hanying_li@zju.edu.cn
  • 1Present address: Department of Materials Science and Engineering, Northwestern University, Evanston 60208, United States
    *Corresponding author at: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received Date: 28 April 2018
    Revised Date: 19 May 2018
    Accepted Date: 24 May 2018
    Available Online: 1 December 2018

Figures(4)

  • Biogenic single crystals have been widely demonstrated to incorporate macromolecules to achieve extra damage tolerance, spurring investigations on their synthetic analogs with enhanced mechanical properties as well as the enhancement mechanism(s) behind. And the investigations rely on both rational design of the single-crystal composites and, equally importantly, nanoscale and in-situ characterization strategy. Here, composite structures are constructed inside the calcite single-crystal host by incorporating guest materials of agarose fibers, multi-walled carbon nanotubes (MWCNTs), and graphene oxide (GO), through crystallization in agarose gel media. Further, transmission electron microscopy-scanning probe microscopy (TEM-SPM) method, coupling compression measurements with nanoscale imaging, shows that the obtained single-crystal composites exhibit improved toughness, compared to the solution-grown pure single crystals. Particularly, the rupture time increases by 1.25 times after the gel-networks and MWCNTs are incorporated. More importantly, the in-situ observation of the crystal deformation suggests that the guest incorporation toughens the single-crystal host by the shielding effect of nanofiber on crack-bridging at nanoscale. As such, this work may have implications for understanding the damage tolerance of biominerals as well as towards the development of new mechanically reinforced single-crystal composite materials.
  • 加载中
    1. [1]

      (a) P.M. Dove, J.J. DeYoreo, S. Weiner, Biomineralization, The Mineralogical Society of America, Washington DC, 2003, pp. 57-93;
      (b) Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, Science 306 (2004) 1161-1164;
      (c) J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler, Nature 412 (2001) 819-822;
      (d) F. Nudelman, H.H. Chen, H.A. Goldberg, S. Weiner, L. Addadi, Faraday Dis. 136 (2007) 9-25;
      (e) A. Berman, J. Hanson, L. Leiserowitz, et al., Science 259 (1993) 776-779;
      (f) K. Gries, R. Kroger, C. Kubel, M. Fritz, A. Rosenauer, Acta Biomater. 5 (2009) 3038-3044.

    2. [2]

      J. Aizenberg, J. Hanson, T.F. Koetzle, S. Weiner, L. Addadi, J. Am. Chem. Soc. 119(1997) 881-886.  doi: 10.1021/ja9628821

    3. [3]

      (a) H.Y. Li, H.L. Xin, M.E. Kunitake, et al., Adv. Funct. Mater. 21 (2011) 2028-2034;
      (b) J.S. Robach, S.R. Stock, A. Veis, J. Struct. Biol. 151 (2005) 18-29.

    4. [4]

      L. Addadi, S. Weiner, Angew. Chem. Int. Ed. 31(1992) 153-169.  doi: 10.1002/anie.199201531

    5. [5]

      (a) B. Pokroy, A.N. Fitch, P.L. Lee, et al., J. Struct. Biol. 153 (2006) 145-150;
      (b) B. Pokroy, A.N. Fitch, E. Zolotoyabko, Adv. Mater. 18 (2006) 2363-2368.

    6. [6]

      (a) M.E. Kunitake, S.P. Baker, L.A. Estroff, MRS Commun. 2 (2012) 113-116;
      (b) M.E. Kunitake, L.M. Mangano, J.M. Peloquin, S.P. Baker, L.A. Estroff, Acta Biomater. 9 (2013) 5353-5359.

    7. [7]

      (a) R. Gueta, A. Natan, L. Addadi, et al., Angew. Chem. Int. Ed. 46 (2007) 291-294;
      (b) P. Gilbert, A. Young, S.N. Coppersmith, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 11350-11355;
      (c) P. Gilbert, R.A. Metzler, D. Zhou, et al., J. Am. Chem. Soc. 130 (2008) 17519-17527.

    8. [8]

      (a) J.M. Garcia-Ruiz, J.A. Gavira, F. Otalora, A. Guasch, M. Coll, Mater. Res. Bull. 33 (1998) 1593-1598;
      (b) J.A. Gavira, A.E. Van Driessche, J.M. Garcia-Ruiz, Cryst. Growth Des. 13 (2013) 2522-2529;
      (c) Y.Y. Kim, K. Ganesan, P.C. Yang, et al., Nat. Mater. 10 (2011) 890-896;
      (d) A. Brif, G. Ankonina, C. Drathen, B. Pokroy, Adv. Mater. 26 (2014) 477-481;
      (e) H.Y. Li, H.L. Xin, D.A. Muller, L.A. Estroff, Science 326 (2009) 1244-1247;
      (f) Y.J. Liu, T.W. Yuan, Y. Shi, et al., Angew. Chem. Int. Ed. 53 (2014) 4127-4131;
      (g) C.H. Lu, L.M. Qi, H.L. Cong, et al., Chem. Mater. 17 (2005) 5218-5224;
      (h) L. Chen, T. Ye, X. Jin, et al., CrystEngComm 17 (2015) 8113-8118;
      (i) W. Liu, Y.J. Liu, L. Chen, et al., Chin. Chem. Lett. 26 (2015) 504-508;
      (j) B. Wucher, W.B. Yue, A.N. Kulak, F.C. Meldrum, Chem. Mater.19 (2007) 1111-1119;
      (k) M. Sindoro, Y. Feng, S. Xing, et al., Angew. Chem. Int. Ed. 50 (2011) 9898-9902;
      (l) Y.Y. Kim, A.S. Schenk, D. Walsh, et al., Nanoscale 6 (2014) 852-859.

    9. [9]

      (a) R. Munoz-Espi, A. Chandra, G. Wegner, Cryst. Growth Des. 7 (2007) 1584-1589;
      (b) Y.Y. Kim, L. Ribeiro, F. Maillot, et al., Adv. Mater. 22 (2010) 2082-2086;
      (c) G. Lu, S. Li, Z. Guo, et al., Nat. Chem. 4 (2012) 310-316;
      (d) T. Ye, X.Y. Jin, L. Chen, et al., Chin. Chem. Lett. 28 (2017) 857-862;
      (e) Y.J. Liu, H. Zang, L. Wang, et al., Chem. Mater. 28 (2016) 7537-7543;
      (f) A.N. Kulak, R. Grimes, Y.Y. Kim, et al., Chem. Mater. 28 (2016) 7528-7536;
      (g) E. Asenath-Smith, J.M. Noble, R. Hovden, et al., Chem. Mater. 29 (2017) 555-563.

    10. [10]

      (a) L.A. Estroff, I. Cohen, Nat. Mater. 10 (2011) 810-811;
      (b) K. Rae Cho, Y.Y. Kim, P. Yang, et al., Nat. Commun. 7 (2016) 10187.

    11. [11]

      (a) H.J. Nickl, H.K. Henisch, J. Electrochem. Soc. 116 (1969) 1258-1270;
      (b) J.A. Gavira, J.M. Garcia-Ruiz, Acta Crystallogr. Sect. D-Biol. Crystallogr. 58 (2002) 1653-1656;
      (c) H.Y. Li, L.A. Estroff, Adv. Mater. 21 (2009) 470-473;
      (d) J. Ren, B. Huang, L. Chen, et al., CrystEngComm 18 (2016) 800-806;
      (e) H. Li, G. Xue, J. Wu, et al., Chin. Chem. Lett. 28 (2017) 2121-2124.

    12. [12]

      (a) S. Borukhin, L. Bloch, T. Radlauer, et al., Adv. Funct. Mater. 22 (2012) 4216-4224;
      (b) Y.Y. Kim, J.D. Carloni, B. Demarchi, et al., Nat. Mater. 15 (2016) 903-910;
      (c) B. Kahr, R.W. Gurney, Chem. Rev. 101 (2001) 893-951.

    13. [13]

      (a) E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. Seh, L.A. Estroff, Adv. Funct. Mater. 22 (2012) 2891-2914;
      (b) M.D. Giosia, I. Polishchuk, E. Weber, et al., Adv. Funct. Mater. 26 (2016) 5569-5575;
      (c) J.Chmielewski, J.J. Lewis, S. Lovell, etal., J. Am.Chem. Soc.119 (1997) 10565-10566;
      (d) J.B. Benedict, P.M. Wallace, P.J. Reid, S.H. Jang, B. Kahr, Adv. Mater.15 (2003) 1068-1070;
      (e) E.J.W. Crossland, N. Noel, V. Sivaram, et al., Nature 495 (2013) 215-219.

    14. [14]

      C. Hu, T. Ye, Y.J. Liu, et al., Mater. Chem. Front. 2(2018) 363-368.

    15. [15]

      M. Calvaresi, G. Falini, L. Pasquini, et al., Nanoscale 5(2013) 6944-6949.  doi: 10.1039/c3nr01568h

    16. [16]

      A.S. Schenk, I. Zlotnikov, B. Pokroy, et al., Adv. Funct. Mater. 22(2012) 4668-4676.  doi: 10.1002/adfm.v22.22

    17. [17]

      J.Y. Huang, H. Zheng, S.X. Mao, Q. Li, G.T. Wang, Nano Lett.11(2011) 1618-1622.  doi: 10.1021/nl200002x

    18. [18]

      H.Y. Li, L.A. Estroff, J. Am. Chem. Soc. 129(2007) 5480-5483.  doi: 10.1021/ja067901d

    19. [19]

      (a) M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381 (1996) 678-680;
      (b) J. You, J.Y.Q. Cao, S.C. Chen, Y.Z. Wang, Chin. Chem. Lett. 28 (2017) 201-205.

    20. [20]

      (a) M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409 (2005) 47-99;
      (b) C.G. Kontoyannis, N.V. Vagenas, Analyst 125 (2000) 251-255.

    21. [21]

      D.P. Schweinsberg, Y.D. West, Spectrochim. Acta A 53(1997) 25-34.
       

    22. [22]

      (a) Z. Zhang, M.M. Mao, J. Wang, et al., Nat. Commun. 6 (2015) 10143;
      (b) R.K. Nalla, J.J. Kruzic, J.H. Kinney, R.O. Ritchie, et al., Biomaterials 26 (2005) 217-231;
      (c) R.O. Ritchie, Mater. Sci. Eng. A 103 (1988) 15-28;
      (d) R.O. Ritchie, Int. J. Fracture 100 (1999) 55-83;
      (e) A.G. Evans, J. Am. Ceram. Soc. 73 (1990) 187-206.

    23. [23]

      (a) M.H.G. Wichmann, K. Schulte, H.D.Wagner, Compos. Sci.Technol. 68 (2008) 329-331;
      (b) H.D. Wagner, P.M. Ajayan, K. Schulte, Compos. Sci. Technol. 83 (2013) 27-31.

    24. [24]

      D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39(2010) 228-240.  doi: 10.1039/B917103G

    25. [25]

      X. Wang, H. Bai, Y. Jia, et al., RSC Adv. 2(2012) 2154-2160.  doi: 10.1039/c2ra00765g

    26. [26]

      A.E. Nielsen, Pure Appl. Chem. 53(1981) 2025-2039.  doi: 10.1351/pac198153112025

    27. [27]

      D. Yang, A. Velamakanni, G. Bozoklu, et al., Carbon 47(2009) 145-152.  doi: 10.1016/j.carbon.2008.09.045

    28. [28]

      I. Chowdhury, M.C. Duch, N.D. Mansukhani, et al., Environ. Sci. Technol. 47(2013) 6288-6296.  doi: 10.1021/es400483k

  • 加载中
    1. [1]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    2. [2]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    8. [8]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    13. [13]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    14. [14]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    15. [15]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    16. [16]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    17. [17]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    18. [18]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    19. [19]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    20. [20]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

Metrics
  • PDF Downloads(9)
  • Abstract views(765)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return