Citation: Li Xin, Song Qiuling. Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids[J]. Chinese Chemical Letters, ;2018, 29(8): 1181-1192. doi: 10.1016/j.cclet.2018.01.045 shu

Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids

  • Corresponding author: Song Qiuling, qsong@hqu.edu.cn
  • Received Date: 30 November 2017
    Revised Date: 24 January 2018
    Accepted Date: 24 January 2018
    Available Online: 13 August 2018

Figures(60)

  • This review summarizes the very recent advances in asymmetric reactions catalyzed by chiral phosphoric acids (CPAs), a family of versatile catalysts that catalyze a broad range of reactions to afford diverse chiral molecules. In the past years, different kinds of chiral phosphoric acids have been designed and developed into a privileged class of catalysts in asymmetric synthesis. A number of remarkable achievements have been made by many groups around the world. Due to length limitation, this review only summarizes those works published from January 2016 to November 2017. Meanwhile, catalytic systems which combine metal catalysts and chiral phosphoric acids will not be discussed in this review.
  • 加载中
    1. [1]

      T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. Int. Ed. 43(2004) 1566-1568.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      D. Uraguchi, M. Terada, J. Am. Chem. Soc. 126(2004) 5356-5357.  doi: 10.1021/ja0491533

    3. [3]

      (a) T. Akiyama, Chem. Rev. 107 (2007) 5744-5758;
      (b) A. Zamfir, S. Schenker, M. Freund, S. B. Tsogoeva, Org. Biomol. Chem. 8 (2010) 5262-5276;
      (c) M. Terada, Synthesis (2010) 1929-1982;
      (d) J. Yu, F. Shi, L. Z. Gong, Acc. Chem. Res. 44 (2011) 1156-1171;
      (e) M. Rueping, A. Kuenkel, I. Atodiresei, Chem. Soc. Rev. 40 (2011) 4539-4549;
      (f) M. Terada, Bull. Chem. Soc. Jpn. 83 (2010) 101-119.

    4. [4]

      (a) W. Zhao, Z. Wang, B. Chu, J. Sun, Angew. Chem. Int. Ed. 54 (2015) 1910-1913;
      (b) Y. F. Z. Wang, J. Sun Wong, Angew. Chem. Int. Ed. 54 (2015) 13711-13714.

    5. [5]

      Z. Lai, Z. Wang, J. Sun, Org. Lett. 17(2015) 6058-6061.  doi: 10.1021/acs.orglett.5b03072

    6. [6]

      Z. Lai, J. Sun, Synlett 27(2016) 555-558.
       

    7. [7]

      Y.F. Wong, Z. Wang, J. Sun, Org. Biomol. Chem. 14(2016) 5751-5754.  doi: 10.1039/C6OB00125D

    8. [8]

      N. Dong, Z.P. Zhang, X.S. Xue, X. Li, J.P. Cheng, Angew. Chem. Int. Ed. 55(2016) 1460-1464.  doi: 10.1002/anie.201509110

    9. [9]

      A. Chatupheeraphat, H.H. Liao, S. Mader, et al., Angew. Chem. Int. Ed. 55(2016) 4803-4807.  doi: 10.1002/anie.201511179

    10. [10]

      M. Chen, J. Sun, Angew. Chem. Int. Ed. 56(2017) 4583-4587.  doi: 10.1002/anie.201701947

    11. [11]

      M. Chen, J. Sun, Angew. Chem. Int. Ed. 56(2017) 11966-11970.  doi: 10.1002/anie.201706579

    12. [12]

      D. Qian, L. Wu, Z. Lin, J. Sun, Nat. Commun. 8(2017) 567.  doi: 10.1038/s41467-017-00251-x

    13. [13]

      (a) G. Li, H. Liu, Y. Wang, et al., Chem. Commun. 52 (2016) 2304-2306;
      (b) Q. Wu, C. Ma, X. H. Du, et al., Tetrahedron: Asymmetry 27 (2016) 307-316.

    14. [14]

      Y.Y. Wang, K. Kanomata, T. Korenaga, M. Terada, Angew. Chem. Int. Ed. 55(2016) 927-931.  doi: 10.1002/anie.201508231

    15. [15]

      J.T.M. Correia, B. List, F. Coelho, Angew. Chem. Int. Ed. 56(2017) 7967-7970.  doi: 10.1002/anie.201700513

    16. [16]

      Y. Zhou, Z.L. Xia, Q. Gu, S.L. You, Org. Lett. 19(2017) 762-765.  doi: 10.1021/acs.orglett.6b03610

    17. [17]

      L.D. Zhang, L.R. Zhong, J. Xi, X.L. Yang, Z.J. Yao, J. Org. Chem. 81(2016) 1899-1904.  doi: 10.1021/acs.joc.5b02723

    18. [18]

      Y. Xie, B. List, Angew. Chem. Int. Ed. 56(2017) 4936-4940.  doi: 10.1002/anie.201612149

    19. [19]

      Z. Wang, J. Sun, Org. Lett. 19(2017) 2334-2337.  doi: 10.1021/acs.orglett.7b00867

    20. [20]

      (a) T. Hodík, C. Schneider, Org. Biomol. Chem. 15 (2017) 3706-3716;
      (b) C. Gharui, S. Singh, S. C. Pan, Org. Biomol. Chem. 15 (2017) 7272-7276;
      (c) L. Zhang, Y. Liu, K. Liu, et al., Org. Biomol. Chem. 15 (2017) 8743-8747;
      (d) T. Z. Li, C. A. Geng, X. J. Yin, et al., Org. Lett. 19 (2017) 429-431;
      (e) K. Gebauer, F. Reuß, M. Spanka, C. Schneider, Org. Lett. 19 (2017) 4588-4591.

    21. [21]

      M. Kretzschmar, T. Hodik, C. Schneider, Angew. Chem. Int. Ed. 55(2016) 9788-9792.  doi: 10.1002/anie.201604201

    22. [22]

      A. Dumoulin, G. Masson, J. Org. Chem. 81(2016) 10154-10159.  doi: 10.1021/acs.joc.6b01256

    23. [23]

      C. Gelis, M. Bekkaye, C. Lebe'e, F. Blanchard, G. Masson, Org. Lett. 18(2016) 3422-3425.  doi: 10.1021/acs.orglett.6b01593

    24. [24]

      (a) W. Dai, X. L. Jiang, J. Y. Tao, F. Shi, J. Org. Chem. 81 (2016) 185-192;
      (b) L. Jarrige, F. Blanchard, G. Masson, Angew. Chem. Int. Ed. 56 (2017) 10573-10577.

    25. [25]

      N. Momiyama, H. Tabuse, H. Noda, et al., J. Am. Chem. Soc. 138(2016) 11353-11359.  doi: 10.1021/jacs.6b07150

    26. [26]

      L. Villar, U. Uria, J.I. Martinez, et al., Angew. Chem. Int. Ed. 56(2017) 10535-10538.

    27. [27]

      M.M. Xu, H.Q. Wang, Y. Wan, S.L. Wang, F. Shi, J. Org. Chem. 82(2017) 10226-10233.  doi: 10.1021/acs.joc.7b01731

    28. [28]

      (a) Y. M. Wang, H. H. Zhang, C. Li, T. Fan, F. Shi, Chem. Commun. 52 (2016) 1804-1807;
      (b) Z. Zhang, W. Sun, G. Zhu, et al., Chem. Commun. 52 (2016) 1377-1380.

    29. [29]

      (a) Y. Wang, Q. Wang, J. Zhu, Chem. -Eur. J. 22 (2016) 8084-8088;
      (b) X. X. Sun, H. H. Zhang, G. H. Li, L. Meng, F. Shi, Chem. Commun. 52 (2016) 2968-2971;
      (c) M. Zhang, S. Yu, F. Hu, et al., Chem. Commun. 52 (2016) 8757-8760;
      (d) T. Fan, H. H. Zhang, C. Li, Y. Shen, F. Shi, Adv. Synth. Catal. 358 (2016) 2017-2031;
      (e) Z. Q. Zhu, Y. Shen, X. X. Sun, et al., Adv. Synth. Catal. 358 (2016) 3797-3808.

    30. [30]

      (a) X. X. Sun, H. H. Zhang, G. H. Li, Y. Y. He, F. Shi, Chem. -Eur. J. 22 (2016) 17526-17532;
      (b) X. X. Sun, C. Li, Y. Y. He, et al., Adv. Synth. Catal. 359 (2017) 2660-2670;
      (c) C. Li, H. Lu, X. X. Sun, G. J. Mei, F. Shi, Org. Biomol. Chem. 15 (2017) 4794-4797.

    31. [31]

      C. Weilbeer, M. Sickert, S. Naumov, C. Schneider, Chem.-Eur. J. 23(2017) 513-518.  doi: 10.1002/chem.201604356

    32. [32]

      G.J. Mei, Z.Q. Zhu, J.J. Zhao, et al., Chem. Commun. 53(2017) 2768-2771.  doi: 10.1039/C6CC09775H

    33. [33]

      J. Kikuchi, N. Momiyama, M. Terada, Org. Lett. 18(2016) 2521-2523.  doi: 10.1021/acs.orglett.6b00857

    34. [34]

      (a) F. Zhou, H. Yamamoto, Angew. Chem. Int. Ed. 55 (2016) 8970-8974;
      (b) F. Zhou, H. Yamamoto, Org. Lett. 18 (2016) 4974-4977.

    35. [35]

      Z. Yang, Y. He, F.D. Toste, J. Am. Chem. Soc. 138(2016) 9775-9778.  doi: 10.1021/jacs.6b05939

    36. [36]

      S. Li, J.W. Zhang, X.L. Li, D.J. Cheng, B. Tan, J. Am. Chem. Soc. 138(2016) 16561-16566.  doi: 10.1021/jacs.6b11435

    37. [37]

      Y. Wang, L. Jiang, L. Li, et al., Angew. Chem. Int. Ed. 55(2016) 15142-15146.  doi: 10.1002/anie.201608918

    38. [38]

      H. Lou, Y. Wang, E. Jin, X. Lin, J. Org. Chem. 81(2016) 2019-2026.  doi: 10.1021/acs.joc.5b02848

    39. [39]

      H.H. Zhang, C.S. Wang, C. Li, et al., Angew. Chem. Int. Ed. 56(2017) 116-121.  doi: 10.1002/anie.201608150

    40. [40]

      Y.Y. He, X.X. Sun, G.H. Li, G.J. Mei, F. Shi, J. Org. Chem. 82(2017) 2462-2471.  doi: 10.1021/acs.joc.6b02850

    41. [41]

      R.C. Samanta, H. Yamamoto, J. Am. Chem. Soc. 139(2017) 1460-1463.  doi: 10.1021/jacs.6b13193

    42. [42]

      (a) L. Wang, A. Rahman, X. Lin, Org. Biomol. Chem. 15 (2017) 6033-6041;
      (b) S. G. Lee, S. G. Kim, RSC Adv. 7 (2017) 34283-34286;
      (c) Y. Zhao, L. Wang, J. Zhao, Tetrahedron Lett. 58 (2017) 213-217.

    43. [43]

      (a) Z. Chen, B. Wang, Z. Wang, G. Zhu, J. Sun, Angew. Chem. Int. Ed. 52 (2013) 2027-2031;
      (b) Z. Wang, Z. Chen, J. Sun, Angew. Chem. Int. Ed. 52 (2013) 6685-6688;
      (c) Z. Chen, Z. Wang, J. Sun, Chem. -Eur. J. 19 (2013) 8426-8430.

    44. [44]

      W. Yang, J. Sun, Angew. Chem. Int. Ed. 55(2016) 1868-1871.  doi: 10.1002/anie.201509888

    45. [45]

      W. Yang, Z. Wang, J. Sun, Angew. Chem. Int. Ed. 55(2016) 6954-6958.  doi: 10.1002/anie.201601844

    46. [46]

      S. Liao, M. Leutzsch, M.R. Monaco, B. List, J. Am. Chem. Soc. 138(2016) 5230-5233.  doi: 10.1021/jacs.6b01960

    47. [47]

      J. Wang, M.W. Chen, Y. Ji, S.B. Hu, Y.G. Zhou, J. Am. Chem. Soc.138(2016) 10413-10416.  doi: 10.1021/jacs.6b06009

    48. [48]

      K. Saito, T. Akiyama, Angew. Chem. Int. Ed. 55(2016) 3148-3152.  doi: 10.1002/anie.201510692

    49. [49]

      Y. Kuroda, S. Harada, A. Oonishi, et al., Angew. Chem. Int. Ed. 55(2016) 13137-13141.  doi: 10.1002/anie.201607208

    50. [50]

      S. Das, N. Majumdar, C.K. De, et al., J. Am. Chem. Soc. 139(2017) 1357-1359.  doi: 10.1021/jacs.6b12176

    51. [51]

      G. Zhu, G. Bao, Y. Li, et al., Angew. Chem. Int. Ed. 56(2017) 5332-5335.  doi: 10.1002/anie.201700494

    52. [52]

      Y. Shimoda, H. Yamamoto, J. Am. Chem. Soc. 139(2017) 6855-6858.  doi: 10.1021/jacs.7b03592

    53. [53]

      K. Mori, T. Itakura, T. Akiyama, Angew. Chem. Int. Ed. 55(2016) 11642-11646.  doi: 10.1002/anie.201606063

    54. [54]

      Y. Zhang, Y.F. Ao, Z.T. Huang, et al., Angew. Chem. Int. Ed. 55(2016) 5282-5285.  doi: 10.1002/anie.201600751

    55. [55]

      Y.C. Zhang, Q. Yang, X. Yang, Q.N. Zhu, F. Shi, Asian J. Org. Chem. 5(2016) 914-919.  doi: 10.1002/ajoc.v5.7

    56. [56]

      S. Das, L. Liu, Y. Zheng, et al., J. Am. Chem. Soc. 138(2016) 9429-9432.  doi: 10.1021/jacs.6b06626

    57. [57]

      (a) L. Liu, P. S. J. Kaib, A. Tap, B. List, J. Am. Chem. Soc. 138 (2016) 10822-10825;
      (b) Y. Xie, G. J. Cheng, S. Lee, et al., J. Am. Chem. Soc. 138 (2016) 14538-14541.

    58. [58]

      H. Wu, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 55(2016) 15411-15414.  doi: 10.1002/anie.v55.49

    59. [59]

      H. Wu, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 56(2017) 5858-5861.  doi: 10.1002/anie.201701098

    60. [60]

      P.S.J. Kaib, L. Schreyer, S. Lee, R. Properzi, B. List, Angew. Chem. Int. Ed. 55(2016) 13200-13203.  doi: 10.1002/anie.201607828

    61. [61]

      Y. Cai, Y. Tang, I. Atodiresei, M. Rueping, Angew. Chem. Int. Ed. 55(2016) 14126-14130.  doi: 10.1002/anie.v55.45

    62. [62]

      H. Li, R. Tong, J. Sun, Angew. Chem. Int. Ed. 55(2016) 15125-15128.  doi: 10.1002/anie.201607714

    63. [63]

      A.A. Rexit, S. Luo, M. Mailikezati, J. Org. Chem. 81(2016) 11384-11388.  doi: 10.1021/acs.joc.6b01772

    64. [64]

      J.Z. Wang, J. Zhou, C. Xu, et al., J. Am. Chem. Soc. 138(2016) 5202-5205.  doi: 10.1021/jacs.6b01458

    65. [65]

      Y.H. Chen, L.W. Qi, F. Fang, B. Tan, Angew. Chem. Int. Ed. 56(2017) 16308-16312.  doi: 10.1002/anie.v56.51

    66. [66]

      G. Zhu, G. Bao, Y. Li, et al., Org. Lett 18(2016) 5288-5291.  doi: 10.1021/acs.orglett.6b02609

    67. [67]

      X.Q. Li, H. Yang, J.J. Wang, et al., Chem.-Eur. J. 23(2017) 5381-5385.  doi: 10.1002/chem.201701015

    68. [68]

      J.S. Yu, W.B. Wu, F. Zhou, Org. Biomol. Chem. 14(2016) 2205-2209.  doi: 10.1039/C5OB02495A

    69. [69]

      X. Yang, F.D. Toste, Chem. Sci. 7(2016) 2653-2656.  doi: 10.1039/C5SC04202J

    70. [70]

      J. Zhou, Q.F. Zhang, W.H. Zhao, G.F. Jiang, Org. Biomol. Chem. 14(2016) 6937-6941.  doi: 10.1039/C6OB01176D

    71. [71]

      Y. Wang, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 56(2017) 5612-5615.  doi: 10.1002/anie.201702295

    72. [72]

      A. Dumoulin, G. Bernadat, G. Masson, J. Org. Chem. 82(2017) 1775-1789.  doi: 10.1021/acs.joc.6b03093

    73. [73]

      S.G. Wang, Z.L. Xia, R.Q. Xu, et al., Angew. Chem. Int. Ed. 56(2017) 7440-7443.  doi: 10.1002/anie.201703178

    74. [74]

      X.W. Liang, C. Liu, W. Zhang, S.L. You, Chem. Commun. 53(2017) 5531-5534.  doi: 10.1039/C7CC02419C

    75. [75]

      Y. Yu, J. Li, L. Jiang, J.R. Zhang, L. Zu, Angew. Chem. Int. Ed. 56(2017) 9217-9221.  doi: 10.1002/anie.201705539

    76. [76]

      C. Min, Y. Lin, D. Seidel, Angew. Chem. Int. Ed. 56(2017) 15353-15357.  doi: 10.1002/anie.201709182

    77. [77]

      S. Lee, P.S.J. Kaib, B. List, J. Am. Chem. Soc. 139(2017) 2156-2159.  doi: 10.1021/jacs.6b11993

    78. [78]

      L.W. Qi, J.H. Mao, J. Zhang, B. Tan, Nat. Chem. 10(2017) 58-64.  doi: 10.1038/nchem.2866

    79. [79]

      Y.B. Wang, S.C. Zheng, Y.M. Hu, B. Tan, Nat. Commun. 8(2017) 15489.  doi: 10.1038/ncomms15489

    80. [80]

      X. Yang, S. Pang, F. Cheng, et al., J. Org. Chem. 82(2017) 10388-10397.  doi: 10.1021/acs.joc.7b01856

    81. [81]

      F. Jiang, D. Zhao, X. Yang, et al., ACS Catal. 7(2017) 6984-6989.  doi: 10.1021/acscatal.7b02279

  • 加载中
    1. [1]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    2. [2]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    7. [7]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    8. [8]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    9. [9]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    12. [12]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    13. [13]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    14. [14]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    15. [15]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    16. [16]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    17. [17]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    18. [18]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    19. [19]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    20. [20]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

Metrics
  • PDF Downloads(11)
  • Abstract views(799)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return