Citation: Xiao Chang, Zhang Song-Lin. Mechanism for acetic acid-catalyzed ester aminolysis[J]. Chinese Chemical Letters, ;2018, 29(8): 1233-1236. doi: 10.1016/j.cclet.2018.01.003 shu

Mechanism for acetic acid-catalyzed ester aminolysis

  • Corresponding author: Zhang Song-Lin, slzhang@jiangnan.edu.cn
  • Received Date: 16 November 2017
    Revised Date: 20 December 2017
    Accepted Date: 27 December 2017
    Available Online: 5 August 2018

Figures(7)

  • This paper reports a computational study elucidating reaction mechanism for amide bond formation from esters and amines catalyzed by acetic acid. Two optional mechanisms (namely, classic stepwise and concerted acyl substitution mechanisms) have been studied. Calculation results establish the reaction energy profiles of both mechanisms and locate all the intermediates and transition states in both catalytic cycles. Our results propose that the concerted acyl substitution mechanism may be more likely wherein the formation of C-N bond and the cleavage of C-O bond occur concurrently without the need of rehybridization of the carbonyl carbon. This is also consistent with the fact that no significant racemization/epimerization were observed in the amide products when asymmetric esters and/or amines were used as the reactants, because concerted acyl substitution mechanism precludes the intermediacy of tetrahedral adducts and the accompanying generation/elimination of new chiral centers. Further discussion implies that the concerted acyl substitution mechanism may widely occur in related amidation reactions in the presence of different types of coupling reagents.
  • 加载中
    1. [1]

      (a) E. Valeur, M. Bradley, Chem. Soc. Rev. 38 (2009) 606-631
      (b) C. L. Allen, J. M. J. Williams, Chem. Soc. Rev. 40 (2011) 3405
      (c) V. R. Pattabiraman, J. W. Bode, Nature 480 (2011) 471-479
      (d) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Chem. Soc. Rev. 43 (2014) 2714-2742.

    2. [2]

      (a) A. El-Faham, F. Albericio, Chem. Rev. 111 (2011) 6557-6602
      (b) J. C. Sheehan, G. P. Hess, J. Am. Chem. Soc. 77 (1955) 1067-1068
      (c) G. Gawne, G. W. Kenner, R. C. Sheppard, J. Am. Chem. Soc. 91 (1969) 5669-5671
      (d) L. A. Carpino, P. Henklein, B. M. Foxman, et al., J. Org. Chem. 66 (2001) 5245-5247.

    3. [3]

      (a) J. W. Bode, R. M. Fox, K. D. Baucom, Angew. Chem. Int. Ed. 45 (2006) 1248-1252
      (b) B. Shen, D. M. Makley, J. N. Johnston, Nature 465 (2010) 1027-1032
      (c) W. Wu, Z. Zhang, L. S. Liebeskind, J. Am. Chem. Soc. 133 (2011) 14256-14259
      (d) G. M. Fang, Y. M. Li, F. Shen, et al., Angew. Chem. Int. Ed. 50 (2011) 7645-7649
      (e) J. F. Soulé, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 133 (2011) 18550-18553
      (f) A. M. Dumas, G. A. Molander, J. W. Bode, Angew. Chem. Int. Ed. 51 (2012) 5683-5686
      (g) J. X. Wang, G. M. Fang, Y. He, et al., Angew. Chem. Int. Ed. 54 (2015) 2194-2198
      (h) J. Li, M. J. Lear, Y. Kawamoto, et al., Angew. Chem. Int. Ed. 54 (2015) 12986-12990
      (i) H. Noda, J. W. Bode, J. Am. Chem. Soc. 137 (2015) 3958-3966.

    4. [4]

      (a) C. G. McPherson, N. Caldwell, C. Jamieson, I. Simpson, A. J. B. Watson, Org. Biomol. Chem. 15 (2017) 3507-3518
      (b) C. Sabot, K. A. Kumar, S. Meunier, C. Mioskowski, Tetrahedron Lett. 48 (2007) 3863-3866
      (c) N. Caldwell, C. Jamieson, I. Simpson, A. J. B. Watson, Chem. Commun. 51 (2015) 9495-9498.

    5. [5]

      D.D.S. Sharley, J.M.J. Williams, Chem. Commun. 53(2017) 2020-2023.  doi: 10.1039/C6CC09023K

    6. [6]

      H. Charville, D.A. Jackson, G. Hodges, A. Whiting, M.R. Wilson, Eur. J. Org. Chem. (2011) 5981-5990.
       

    7. [7]

      (a) T. Krause, S. Baader, B. Erb, L. J. Gooßen, Nat. Commun. 7 (2016) 11732
      (b) L. Hu, S. Xu, Z. Zhao, et al., J. Am. Chem. Soc. 138 (2016) 13135-13138.

    8. [8]

      S.L. Zhang, H.X. Wan, Z.Q. Deng, Org. Biomol. Chem. 15(2017) 6367-6374.  doi: 10.1039/C7OB01378G

    9. [9]

      M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford, CT, 2013.

    10. [10]

      (a) A. D. Becke, J. Chem. Phys. 98 (1993) 5648-5652
      (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785-789.

    11. [11]

      M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Compt. Chem. 24(2003) 669-681.  doi: 10.1002/jcc.10189

    12. [12]

      (a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005) 2999-3093
      (b) Y. Fu, L. Liu, R. Q. Li, R. Liu, Q. X. Guo, J. Am. Chem. Soc. 126 (2004) 814-822.

    13. [13]

      (a) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 94 (1990) 5523-5527
      (b) K. Fukui, Acc. Chem. Res. 14 (1981) 363-368.

    14. [14]

      G.W. Anderson, F. Callahan, J. Am. Chem. Soc. 80(1958) 2902-2903.  doi: 10.1021/ja01544a077

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    3. [3]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    4. [4]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    5. [5]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    6. [6]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    7. [7]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    8. [8]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    9. [9]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    10. [10]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    11. [11]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    12. [12]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    13. [13]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    14. [14]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    15. [15]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    16. [16]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    17. [17]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    18. [18]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    19. [19]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    20. [20]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

Metrics
  • PDF Downloads(2)
  • Abstract views(741)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return