Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes
- Corresponding author: Wang Wenjuan, wangwenjuan@biomed.tsinghua.edu.cn Chen Chunlai, chunlai@mail.tsinghua.edu.cn
Citation:
Peng Sijia, Sun Ruirui, Wang Wenjuan, Chen Chunlai. Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes[J]. Chinese Chemical Letters,
;2018, 29(10): 1503-1508.
doi:
10.1016/j.cclet.2017.12.006
T.M. Schmeing, V. Ramakrishnan, Nature 461(2009) 1234-1242.
doi: 10.1038/nature08403
T. Margus, M. Remm, T. Tenson, BMC Genom. 8(2007) 15.
doi: 10.1186/1471-2164-8-15
R. Ero, V. Kumar, Y. Chen, Y.G. Gao, RNA Biol. 13(2016) 1258-1273.
doi: 10.1080/15476286.2016.1201627
Y. Qin, N. Polacek, O. Vesper, et al., Cell 127(2006) 721-733.
doi: 10.1016/j.cell.2006.09.037
N.J. Dibb, P.B. Wolfe, J. Bacteriol. 166(1986) 83-87.
doi: 10.1128/jb.166.1.83-87.1986
M. Pech, Z. Karim, H. Yamamoto, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011) 3199-3203.
doi: 10.1073/pnas.1012994108
F. Yang, Y. Gao, Z. Li, et al., Biochim. Biophys. Acta 1837(2014) 1674-1683.
doi: 10.1016/j.bbabio.2014.05.353
F. Yang, Z. Li, J. Hao, Y. Qin, Protein Cell 5(2014) 563-567.
doi: 10.1007/s13238-014-0050-3
S. Shoji, B.D. Janssen, C.S. Hayes, K. Fredrick, Biochimie 92(2010) 157-163.
doi: 10.1016/j.biochi.2009.11.002
R.N. Evans, G. Blaha, S. Bailey, T.A. Steitz, Proc. Natl. Acad. Sci. U. S. A.105(2008) 4673-4678.
doi: 10.1073/pnas.0801308105
S.R. Connell, M. Topf, Y. Qin, et al., Nat. Struct. Mol. Biol. 15(2008) 910-915.
doi: 10.1038/nsmb.1469
D. Zhang, K. Yan, G. Liu, et al., Nat. Struct. Mol. Biol. 23(2016) 125-131.
doi: 10.1038/nsmb.3160
M.G. Gagnon, J. Lin, T.A. Steitz, Proc. Natl. Acad. Sci. U. S. A. 113(2016) 4994-4999.
doi: 10.1073/pnas.1522932113
M.G. Gagnon, J. Lin, D. Bulkley, T.A. Steitz, Science 345(2014) 684-687.
doi: 10.1126/science.1253525
V. Kumar, R. Ero, T. Ahmed, et al., J. Biol. Chem. 291(2016) 12943-12950.
doi: 10.1074/jbc.M116.725945
P.E. March, M. Inouye, Proc. Natl. Acad. Sci. U. S. A. 82(1985) 7500-7504.
doi: 10.1073/pnas.82.22.7500
H.Q. Liu, C.L. Chen, H.B. Zhang, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011) 16223-16228.
doi: 10.1073/pnas.1103820108
R. Balakrishnan, K. Oman, S. Shoji, R. Bundschuh, K. Fredrick, Nucleic Acids Res. 42(2014) 13370-13383.
doi: 10.1093/nar/gku1098
M.R. Gibbs, K.M. Moon, M. Chen, et al., Proc. Natl. Acad. Sci. U. S. A. 114(2017) 980-985.
doi: 10.1073/pnas.1613665114
H.Q. Liu, D.L. Pan, M. Pech, B.S. Cooperman, J. Mol. Biol. 396(2010) 1043-1052.
doi: 10.1016/j.jmb.2009.12.043
S. Shoji, S.E. Walker, K. Fredrick, Mol. Cell. 24(2006) 931-942.
doi: 10.1016/j.molcel.2006.11.025
A.L. Konevega, N. Fischer, Y.P. Semenkov, et al., Nat. Struct. Mol. Biol.14(2007) 318-324.
doi: 10.1038/nsmb1221
S.K. Chakkarapani, G. Park, S.H. Kang, Chin. Chem. Lett. 26(2015) 1490-1495.
doi: 10.1016/j.cclet.2015.10.017
A.M. van Oijen, N.E. Dixon, Nat. Struct. Mol. Biol. 22(2015) 948-952.
doi: 10.1038/nsmb.3119
C.J. Bustamante, C.M. Kaiser, R.A. Maillard, D.H. Goldman, C.A. Wilson, Annu. Rev. Biophys. 43(2014) 119-140.
doi: 10.1146/annurev-biophys-051013-022811
C.E. Aitken, A. Petrov, J.D. Puglisi, Annu. Rev. Biophys. 39(2010) 491-513.
doi: 10.1146/annurev.biophys.093008.131427
G. Park, S.K. Chakkarapani, S. Ju, S. Ahn, S.H. Kang, Chin. Chem. Lett.29(2018) 505-508.
doi: 10.1016/j.cclet.2017.08.018
F.F. Li, J.N. Gu, X.C. Zhou, Chin. Chem. Lett. 26(2015) 1514-1517.
doi: 10.1016/j.cclet.2015.09.013
H. Cai, C. Zhou, Q. Yang, et al., Chin. Chem. Lett. 29(2018) 531-534.
doi: 10.1016/j.cclet.2017.09.010
C.L. Chen, B. Stevens, J. Kaur, et al., Mol. Cell. 42(2011) 367-377.
doi: 10.1016/j.molcel.2011.03.024
C.L. Chen, H.B. Zhang, S.L. Broitman, et al., Nat. Struct. Mol. Biol. 20(2013) 582-588.
doi: 10.1038/nsmb.2544
C.W. Lin, A.Y. Ting, J. Am. Chem. Soc. 128(2006) 4542-4543.
doi: 10.1021/ja0604111
J. Yin, A.J. Lin, D.E. Golan, C.T. Walsh, Nat. Protoc. 1(2006) 280-285.
doi: 10.1038/nprot.2006.43
S. Leng, Q.L. Qiao, Y. Gao, et al., Chin. Chem. Lett. 28(2017) 1911-1915.
doi: 10.1016/j.cclet.2017.03.034
L. Peng, Y. Xu, P. Zou, Chin. Chem. Lett. 28(2017) 1925-1928.
doi: 10.1016/j.cclet.2017.09.037
F. Sun, W.-B. Zhang, Chin. Chem. Lett. 28(2017) 2078-2084.
doi: 10.1016/j.cclet.2017.08.052
E.I. De Laurentiis, H.J. Wieden, Sci. Rep. 5(2015) 8573.
doi: 10.1038/srep08573
J. Chen, A. Petrov, A. Tsai, S.E. O'Leary, J.D. Puglisi, Nat. Struct. Mol. Biol. 20(2013) 718-727.
doi: 10.1038/nsmb.2567
C. Chen, X. Cui, J.F. Beausang, et al., Proc. Natl.Acad. Sci. U. S. A.113(2016) 7515-7520.
doi: 10.1073/pnas.1602668113
T. Pape, W. Wintermeyer, M.V. Rodnina, Embo. J. 17(1998) 7490-7497.
doi: 10.1093/emboj/17.24.7490
W. Liu, C. Chen, D. Kavaliauskas, et al., Nucleic Acids Res. 43(2015) 9519-9528.
doi: 10.1093/nar/gkv856
M.V. Rodnina, A. Savelsbergh, V.I. Katunin, W. Wintermeyer, Nature 385(1997) 37-41.
doi: 10.1038/385037a0
A. Korostelev, D.N. Ermolenko, H.F. Noller, Curr. Opin. Chem. Biol. 12(2008) 674-683.
doi: 10.1016/j.cbpa.2008.08.037
J.B. Munro, K.Y. Sanbonmatsu, C.M.T. Spahn, S.C. Blanchard, Trends Biochem. Sci. 34(2009) 390-400.
doi: 10.1016/j.tibs.2009.04.004
J. Frank, R.L. Gonzalez, Annu. Rev. Biochem. 79(2010) 381-412.
doi: 10.1146/annurev-biochem-060408-173330
N. Fischer, A.L. Konevega, W. Wintermeyer, M.V. Rodnina, H. Stark, Nature 466(2010) 329-333.
doi: 10.1038/nature09206
X. Agirrezabala, H.Y. Liao, E. Schreiner, et al., Proc. Natl. Acad. Sci. U. S. A. 109(2012) 6094-6099.
doi: 10.1073/pnas.1201288109
D.S. Tourigny, I.S. Fernandez, A.C. Kelley, V. Ramakrishnan, Science 340(2013) 1235490.
doi: 10.1126/science.1235490
J. Zhou, L. Lancaster, J.P. Donohue, H.F. Noller, Science 340(2013) 1236086.
doi: 10.1126/science.1236086
A. Pulk, J.H.D. Cate, Science 340(2013) 1235970.
doi: 10.1126/science.1235970
A.F. Brilot, A.A. Korostelev, D.N. Ermolenko, N. Grigorieff, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 20994-20999.
doi: 10.1073/pnas.1311423110
J. Zhou, L. Lancaster, J.P. Donohue, H.F. Noller, Science 345(2014) 1188-1191.
doi: 10.1126/science.1255030
E. Salsi, E. Farah, J. Dann, D.N. Ermolenko, Proc.Natl.Acad. Sci. U. S. A.111(2014) 15060-15065.
doi: 10.1073/pnas.1410873111
E. Salsi, E. Farah, Z. Netter, J. Dann, D.N. Ermolenko, J. Mol. Biol. 427(2015) 454-467.
doi: 10.1016/j.jmb.2014.11.010
C.L. Chen, B. Stevens, J. Kaur, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011) 16980-16985.
doi: 10.1073/pnas.1106999108
T.M. Schmeing, R.M. Voorhees, A.C. Kelley, et al., Science 326(2009) 688-694.
doi: 10.1126/science.1179700
J.L.E. Heller, R. Kamalampeta, H.J. Wieden, Mol. Cell Biol. 37(2017) e00653-16.
A.L. Starosta, J. Lassak, K. Jung, D.N. Wilson, FEMS Microbiol. Rev. 38(2014) 1172-1201.
doi: 10.1111/1574-6976.12083
E. Giudice, R. Gillet, Trends Biochem. Sci. 38(2013) 403-411.
doi: 10.1016/j.tibs.2013.06.002
H. Himeno, N. Nameki, D. Kurita, A. Muto, T. Abo, Biochimie 114(2015) 102-112.
doi: 10.1016/j.biochi.2014.11.014
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Shuai Qiu , Jia He , Xiao Hu , Hongxia Yan , Zhao Gao , Wei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Xinyi Luo , Ke Wang , Yingying Xue , Xiaobao Cao , Jianhua Zhou , Jiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924
Yinling HOU , Jia JI , Hong YU , Xiaoyun BIAN , Xiaofen GUAN , Jing QIU , Shuyi REN , Ming FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Qiuye Wang , Yabing Sun , Liangxue Lai , Haijing Cui , Yonglong Ye , Ming Yang , Weihao Zhu , Bo Yuan , Quanliang Mao , Wenzhi Ren , Aiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
Ruike Hu , Kangmin Wang , Junxiang Liu , Jingxian Zhang , Guoliang Yang , Liqiu Wan , Bijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113
Ali Dai , Zhiguo Zheng , Liusheng Duan , Jian Wu , Weiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187