Species, engineering and characterizations of defects in TiO2-based photocatalyst
- Corresponding author: Zhang Fuxiang, fxzhang@dicp.ac.cn
Citation:
Dong Beibei, Liu Taifeng, Li Can, Zhang Fuxiang. Species, engineering and characterizations of defects in TiO2-based photocatalyst[J]. Chinese Chemical Letters,
;2018, 29(5): 671-680.
doi:
10.1016/j.cclet.2017.12.002
(a) J. Nowotny, Energy Environ. Sci. 1 (2008) 565-572;
(b) H. J. Yu, R. Shi, T. R. Zhang, et al., Adv. Mater. 29 (2017) 1605148;
(c) Y. F. Zhao, X. D. Jia, T. R. Zhang, et al., Adv. Energy Mater. 6 (2016) 1501974.
J. Bisquert, A. Zaban, P. Salvador, J. Phys. Chem. B 106(2002) 8774-8782.
doi: 10.1021/jp026058c
(a) G. Adriaenssens, S. Baranovskii, Ö. Öktü, et al., Phys. Rev. B 51 (1995) 9661-9667;
(b) J. Noolandi, Phys. Rev. B 16 (1977) 4466-4473;
(c) F. W. Schmidlin, Phys. Rev. B 16 (1977) 2362-2385.
(a) A. Barzykin, M. Tachiya, J. Phys. Chem. B 106 (2002) 4356-4363;
(b) D. C. Hurum, K. A. Gray, J. Phys. Chem. B 109 (2005) 977-980.
M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny, J. Phys. Chem. C 112(2008) 5275-5300.
doi: 10.1021/jp077275m
Y. Ma, X. Wang, C. Li, et al., Chem. Rev. 114(2014) 9987-10043.
doi: 10.1021/cr500008u
A. Fujishima, Nature 238(1972) 37-38.
doi: 10.1038/238037a0
(a) P. Zhang, M. Fujitsuka, T. Majima, J. Energy Chem. 25 (2016) 917-926;
(b) W. Zhang, T. Zhou, J. Hong, R. Xu, J. Energy Chem. 25 (2016) 500-506;
(c) C. Wu, Z. Gao, Y. Dai, et al., J. Energy Chem. 25 (2016) 726-733.
(a) M. Batzill, E. H. Morales, U. Diebold, Phys. Rev. Lett. 96 (2006) 026103;
(b) M. Nowotny, T. Bak, J. Nowotny, J. Phys. Chem. B 110 (2006) 16270-16282.
(a) U. Diebold, Surf. Sci. Rep. 48 (2003) 53-229;
(b) P. Kofstad, Oxid. Metal. 44 (1995) 3-27.
T. Bak, J. Nowotny, M. Nowotny, J. Phys. Chem. B 110(2006) 21560-21567.
doi: 10.1021/jp063700k
F. Kröger, H. Vink, J. Phys. Chem. Solids 5(1958) 208-223.
doi: 10.1016/0022-3697(58)90069-6
D. M. Smyth, The Defect Chemistry of Metal Oxides, Oxford University, 2000.
P. Wynblatt, R. McCune, J. Nowotny, L. Dufour, Surface and Near-Surface Chemistry of Oxide Materials, Elsevier, Amsterdam, 1988.
L.M. Peter, J. Li, R. Peat, J. Electroanal. Chem. 165(1984) 29-40.
doi: 10.1016/S0022-0728(84)80084-4
K. Maeda, N. Murakami, T. Ohno, J. Phys. Chem. C 118(2014) 9093-9100.
doi: 10.1021/jp502949q
(a) J. Nowotny, T. Bak, M. K. Nowotny, L. R. Sheppard, J. Phys. Chem. B 110 (2006) 18492-18495;
(b) S. Polarz, J. Strunk, M. Driess, et al., Angew. Chem. Int. Ed. 45 (2006) 2965-2969.
(a) X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 331 (2011) 746-750;
(b) Y. Liu, L. Tian, X. B. Chen, et al., Sci. Bull. 62 (2017) 431-441.
G. Wang, H. Wang, Y. Li, et al., Nano Lett. 11(2011) 3026-3033.
doi: 10.1021/nl201766h
A. Naldoni, M. Allieta, V. Santo, et al., J. Am. Chem. Soc. 134(2012) 7600-7603.
doi: 10.1021/ja3012676
W. Wei, N. Yaru, L. Chunhua, X. Zhongzi, RSC Adv. 2(2012) 8286-8288.
doi: 10.1039/c2ra21049e
H. Liu, H. Ma, X.H. Bao, et al., Chemosphere 50(2003) 39-46.
doi: 10.1016/S0045-6535(02)00486-1
F. Zuo, L. Wang, P. Feng, et al., J. Am. Chem. Soc. 132(2010) 11856-11857.
doi: 10.1021/ja103843d
I. Justicia, P. Ordejón, A. Figueras, et al., Adv. Mater. 14(2002) 1399-1402.
doi: 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C
Z. Wang, C. Yang, M. Jiang, et al., Adv. Funct. Mater. 23(2013) 5444-5450.
doi: 10.1002/adfm.v23.43
Z. Zheng, B. Huang, H. Whangbo, et al., Chem. Commun. 48(2012) 5733-5735.
doi: 10.1039/c2cc32220j
(a) X. Yu, B. Kim, Y. K. Kim, ACS Catal. 3 (2013) 2479-2486;
(b) M. Kong, Y. Li, X. Zhao, et al., J. Am Chem. Soc. 133 (2011) 16414-16417.
K.E. Karakitsou, X.E. Verykios, J. Phys. Chem. 97(1993) 1184-1189.
doi: 10.1021/j100108a014
J. Kiwi, M. Gratzel, J. Phys. Chem. C 90(1986) 637-640.
doi: 10.1021/j100276a031
S. Peng, Y. Li, S. Li, et al., Chem. Phys. 398(2004) 235-239.
W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98(1994) 13669-13679.
doi: 10.1021/j100102a038
T. Takata, K. Domen, J. Phys. Chem. C 113(2009) 19386-19388.
doi: 10.1021/jp908621e
W. Mu, J.M. Herrmann, P. Pichat, Catal. Lett. 3(1989) 73-84.
doi: 10.1007/BF00765057
(a) E. Borgarello, J. Kiwi, M. Visca, et al., J. Am. Chem. Soc. 104 (1982) 2996-3002;
(b) A. K. Ghosh, H. P. Maruska, J. Electrochem. Soc. 124 (1977) 1516-1522;
(c) H. P. Maruska, A. K. Ghosh, Sol. Energy Mater. 1 (1979) 237-247;
(d) J. Zhu, Z. Deng, L. Zhang, et al., Appl. Catal B: Environ. 62 (2006) 329-335;
(e) J. Choi, H. Park, M. R. Hoffmann, J. Phys. Chem. C 114 (2010) 783-792.
A. Mackor, G. Blasse, Chem. Phys. Lett. 77(1981) 6-8.
doi: 10.1016/0009-2614(81)85588-1
(a) J. M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 108 (1984) 618-622;
(b) N. Serpone, D. Lawless, Langmuir 10 (1994) 643-652.
(a) J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A: Chem. 180 (2006) 196-204;
(b) S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815-2819;
(c) X. Wang, J. G. Li, T. Ishigaki, et al., J. Phys Chem. B 110 (2006) 6804-6809;
(d) M. Litter, J. A. Navio, J. Photochem, Photobiol. A: Chem. 98 (1996) 171-181.
J.C.S. Wu, C.H. Chen, J. Photochem. Photobiol. A:Chem. 163(2004) 509-515.
doi: 10.1016/j.jphotochem.2004.02.007
Z. Luo, Q.H. Gao, J. Photochem. Photobiol. A:Chem. 63(1992) 367-375.
doi: 10.1016/1010-6030(92)85202-6
(a) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271;
(b) J. L. Gole, J. D. Stout, C. Burda, Y. Lou, X. Chen, J. Phys. Chem. B 108 (2004) 1230-1240;
(c) P. G. Wu, C. H. Ma, J. K. Shang, Appl. Phys. A 81 (2005) 1411-1417.
(a) J. C. Yu, J. Yu, L. Zhang, et al., Chem. Mater. 14 (2002) 3808-3816;
(b) J. G. Yu, C. Y. Jimmy, K. Iu, et al., J. Solid State Chem. 174 (2003) 372-380.
(a) T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32 (2003) 364-365;
(b) T. Ohno, M. Akiyoshi, M. Matsumurac, et al., Appl. Catal. A: Gen. 265 (2004) 115-121;
(c) T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81 (2002) 454-456;
(d) T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett. 32 (2003) 330-331.
(a) W. Zhao, W. Ma, Z. Shuai, et al., J. Am. Chem. Soc. 126 (2004) 4782-4783;
(b) D. Chen, D. Yang, Q. Wang, Z. Jiang, Ind. Eng. Chem. Res. 45 (2006) 4110-4116.
(a) S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 297 (2002) 2243-2245;
(b) S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 42 (2003) 4908-4911;
(c) H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. 32 (2003) 772-773.
(a) L. Lin, W. Lin, Y. Zhu, B. Zhao, Y. Xie, Chem. Lett. 34 (2005) 284-285;
(b) N. O. Gopal, H. H. Lo, S. C. Ke, et al., J. Phys. Chem. C 116 (2012) 16191-16197.
(a) O. Diwald, T. L. Thompson, J. T. Yates, et al., J. Phys. Chem. B 108 (2004) 6004-6008;
(b) S. Yin, H. Yamaki, T. Sato, et al., Solid State Sci. 7 (2005) 1479-1485;
(c) Y. Kuroda, T. Mori, S. Kittaka, et al., Langmuir 21 (2005) 8026-8034;
(d) X. B. Chen, Y. B. Lou, J. L. Gole, et al., Adv. Funct. Mater. 15 (2005) 41-49;
(e) C. Burda, Y. B. Lou, J. L. Gole, et al., Nano Lett. 3 (2003) 1049-1051;
(f) S. Hoang, S. P. Berglund, C. B. Mullins, et al., J. Am. Chem. Soc. 134 (2012) 3659-3662.
(a) J. Ma, H. Wu, Y. Liu, H. He, J. Phys. Chem. C 118 (2014) 7434-7441;
(b) Z. Lin, A. Orlov, R. M. Lambert, M. C. Payne, J. Phys. Chem. B 109 (2005) 20948-20952;
(c) T. Ihara, M. Miyoshi, S. Sugihara, et al., Appl. Catal. B: Environ. 42 (2003) 403-409.
(a) J. Wang, D. N. Tafen, N. Wu, et al., J. Am. Chem. Soc. 131 (2009) 12290-12297;
(b) S. Sakthivel, M. Janczarek, H. Kisch, J. Phys. Chem. B 108 (2004) 19384-19387;
(c) H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107 (2003) 5483-5486.
(a) A. Nakada, S. Nishioka, K. Maeda, et al., J. Mater Chem. A 5 (2017) 11710-11719;
(b) M. E. Kurtoglu, T. Longenbach, K. Sohlberg, Y. Gogotsi, J. Phys. Chem. C 115 (2011) 17392-17399;
(c) M. Zou, L. Feng, M. H. Yang, et al., Nano Adv. 2 (2017) 36-44.
(a) D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 17 (2005) 2596-2602;
(b) S. In, A. Orlov, R. M. Lambert, et al., J. Am. Chem. Soc. 129 (2007) 13790-13791.
(a) W. J. Lo, Y. W. Chung, G. A. Somorjai, Surf. Sci. 71 (1978) 199-219;
(b) M. A. Henderson, Surf. Sci. 355 (1996) 151-166.
(a) M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69-96;
(b) G. Li, N. M. Dimitrijevic, K. A. Gray, et al., J. Am. Chem. Soc. 130 (2008) 5402-5403;
(c) A. Selloni, Nat. Mater. 7 (2008) 613-615.
X. Pan, Y.J. Xu, Appl. Catal. A:Gen. 459(2013) 34-40.
doi: 10.1016/j.apcata.2013.04.007
(a) X. Q. Gong, A. Selloni, J. Phys. Chem. B 109 (2005) 19560-19562;
(b) A. Vittadini, A. Selloni, F. P. Rotzinger, M. Grätzel, Phys. Rev. Lett. 81 (1998) 2954-2957;
(c) H. Xu, P. Reunchan, J. H. Ye, et al., Chem. Mater. 25 (2013) 405-411;
(d) J. Pan, G. Liu, H. M. Cheng, et al., Angew. Chem. Int. Ed. 50 (2011) 2133-2137.
G. Liu, J.C. Yu, G.Q. Lu, H.M. Cheng, Chem. Commun. 47(2011) 6763-6783.
doi: 10.1039/c1cc10665a
J.G. Yu, H.G. Yu, W.K. Ho, et al., J. Phys. Chem. B 107(2003) 13871-13879.
doi: 10.1021/jp036158y
(a) M. J. Puska, C. Corbel, R. M. Nieminen, Phys. Rev. B 41 (1990) 9980-9993;
(b) W. Shockley, W. Read Jr, Phys. Rev. 87 (1952) 835-842.
(a) S. Yang, L. E. Halliburton, A. Fujishima, et al., Appl. Phys. Lett. 94 (2009) 162114;
(b) M. D'Arienzo, J. Carbajo, F. Morazzoni, et al., J. Am. Chem. Soc. 133 (2011) 17652-17661;
(c) D. C. Hurum, A. G. Agrios, M. C. Thurnauer, et al., J. Electron. Spectrosc. Relat. Phenom. 150 (2006) 155-163;
(d) J. B. Priebe, M. Karnahl, A. Brückner, et al., Angew. Chem. Int. Ed. 52 (2013) 11420-11424;
(e) R. F. Howe, M. Graetzel, J. Phys. Chem. 91 (1987) 3906-3909;
(f) R. Chong, J. Li, C. Li, et al., Chem. Commun. 50 (2014) 165-167;
(g) R. Li, Y. Weng, C. Li, et al., Energy Environ. Sci. 8 (2015) 2377-2382;
(h) R. Chong, J. Li, C. Li, et al., J. Catal. 314 (2014) 101-108.
D.C. Hurum, A.G. Agrios, K.A. Gray, J. Phys. Chem. B 107(2003) 4545-4549.
doi: 10.1021/jp0273934
F. Amano, M. Nakata, A. Yamamoto, T. Tanaka, J. Phys. Chem. C 120(2016) 6467-6474.
(a) S. Yang, L. E. Halliburton, A. Fujishima, et al., Appl. Phys. Lett. 94 (2009) 162114;
(b) M. D'Arienzo, J. Carbajo, F. Morazzoni, et al., J. Am. Chem. Soc. 133 (2011) 17652-17661;
(c) D. C. Hurum, A. G. Agrios, M. C. Thurnauer, et al., J. Electron. Spectrosc. Relat. Phenom. 150 (2006) 155-163;
(d) J. B. Priebe, M. Karnahl, A. Brückner, et al., Angew. Chem. Int. Ed. 52 (2013) 11420-11424;
(e) R. F. Howe, M. Graetzel, J. Phys. Chem. 91 (1987) 3906-3909;
(f) R. Chong, J. Li, C. Li, et al., Chem. Commun. 50 (2014) 165-167;
(g) R. Li, Y. Weng, C. Li, et al., Energy Environ. Sci. 8 (2015) 2377-2382;
(h) R. Chong, J. Li, C. Li, et al., J. Catal. 314 (2014) 101-108.
(a) M. V. Dozzi, C. D'Andrea, E. Selli, et al., J. Phys. Chem. C 117 (2013) 25586-25595;
(b) K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, J. Photochem. Photobiol. A: Chem. 132 (2000) 99-104.
J.Y. Shi, J. Chen, C. Li, et al., J. Phys. Chem. C 111(2007) 693-699.
doi: 10.1021/jp065744z
(a) B. B. Dong, Y. Qi, C. Li, et al., Dalton Trans. 46 (2017) 10707-10713;
(b) R. Plugaru, A. Cremades, J. Piqueras, J. Phys. Condens. Matter 16 (2003) S261-S268;
(c) I. Fernández, A. Cremades, J. Piqueras, Semicond. Sci. Technol. 20 (2005) 239-243.
(a) G. Dlubek, R. Krause, Phys. Status Solidi 102 (1987) 443-479;
(b) Y. Itoh, H. Murakami, Appl. Phys. A 58 (1994) 59-62.
X. Jiang, Y. Zhang, C. Pan, et al., J. Phys. Chem. C 116(2012) 22619-22624.
doi: 10.1021/jp307573c
(a) D. V. Lang, J. Appl. Phys. 45 (1974) 3023-3032;
(b) T. Miyagi, T. Ogawa, T. Sato, et al., Jpn. J. Appl. Phys. 40 (2001) L404-L406.
(a) A. Yamakata, T. Ishibashi, H. Onishi, J. Phys. Chem. B 105 (2001) 7258-7262;
(b) M. Zhu, Y. Mi, Y. X. Weng, et al., J. Phys. Chem. C 117 (2013) 18863-18869;
(c) H. Zhao, Q. Zhang, Y. X. Weng, J. Phys. Chem. C 111 (2007) 3762-3769.
(a) A. Thomas, W. Flavell, F. Wiame, et al., Phys. Rev. B 75 (2007) 035105;
(b) A. Thomas, W. Flavell, R. Hengerer, et al., Phys. Rev. B 67 (2003) 035110.
(a) X. Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5 (2006) 665-670;
(b) Y. He, O. Dulub, H. Cheng, A. Selloni, U. Diebold, Phys. Rev. Lett. 102 (2009) 106105.
P. Krüger, S. Bourgeois, A. Morgante, et al., Phys. Rev. Lett. 100(2008) 055501.
doi: 10.1103/PhysRevLett.100.055501
J. Boerio-Goates, S.J. Smith, B.F. Woodfield, et al., J. Phys. Chem. C 117(2013) 4544-4550.
doi: 10.1021/jp310993w
M. Henzler, Appl. Phys. A 34(1984) 205-214.
doi: 10.1007/BF00616574
W. Göpel, J. Anderson, G. Rocker, et al., Surf. Sci. 139(1984) 333-346.
doi: 10.1016/0039-6028(84)90054-2
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Bingke Zhang , Dongbo Wang , Jiamu Cao , Wen He , Gang Liu , Donghao Liu , Chenchen Zhao , Jingwen Pan , Sihang Liu , Weifeng Zhang , Xuan Fang , Liancheng Zhao , Jinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469