The recent advances in constructing designed electrode in lithium metal batteries
- Corresponding author: Zhang Kang-Da, Kangda.Zhang@zjnu.cn Chen Dong, Chen_dong@zju.edu.cn
Citation:
Cui Jiecheng, Zhan Tian-Guang, Zhang Kang-Da, Chen Dong. The recent advances in constructing designed electrode in lithium metal batteries[J]. Chinese Chemical Letters,
;2017, 28(12): 2171-2179.
doi:
10.1016/j.cclet.2017.11.039
L. Kazmerski, Renew. Sustain. Energy Rev. 38(2013) 834-847.
R.F. Service, Science 332(2011) 293.
doi: 10.1126/science.332.6027.293
C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22(2010) E28-E62.
doi: 10.1002/adma.v22:8
S. Chu, A. Majumdar, Nature 488(2012) 294-303.
doi: 10.1038/nature11475
B. Dunn, H. Kamath, J.M. Tarascon, Science 334(2011) 928-935.
doi: 10.1126/science.1212741
K. Amine, R. Kanno, Y. Tzeng, MRS Bull. 39(2014) 395-401.
doi: 10.1557/mrs.2014.62
J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135(2013) 1167-1176.
doi: 10.1021/ja3091438
J.B. Goodenough, Y. Kim, Chem. Mater. 22(2010) 587-603.
doi: 10.1021/cm901452z
J.M. Tarascon, M. Armand, Nature 414(2001) 359-367.
doi: 10.1038/35104644
W. Xu, J.L. Wang, F. Ding, et al., Energy Environ. Sci. 7(2014) 513-537.
doi: 10.1039/C3EE40795K
X.B. Chen, R. Zhang, C.Z. Zhao, Q. Zhang, Chem. Rev.117(2017) 10403-10473.
doi: 10.1021/acs.chemrev.7b00115
M.D. Tikekar, S. Choudhury, Z.Y. Tu, L.A. Archer, Nat. Energy 1(2016) 16114.
doi: 10.1038/nenergy.2016.114
Y. Sun, N. Liu, Y. Cui, Nat. Energy 1(2016) 16071.
doi: 10.1038/nenergy.2016.71
A. Manthiram, S.H. Chung, C.X. Zu, Adv. Mater. 27(2015) 1980-2006.
doi: 10.1002/adma.v27.12
J.Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 1(2015) 127-145.
doi: 10.1016/j.ensm.2015.09.008
J. Liang, Z.H. Sun, F. Li, H.M. Cheng, Energy Storage Mater. 2(2016) 76-106.
doi: 10.1016/j.ensm.2015.09.007
H.J. Peng, J.Q. Huang, Q. Zhang, Chem. Soc. Rev. 46(2017) 5237-5288.
doi: 10.1039/C7CS00139H
L.P. Yue, J. Ma, J.J. Zhang, et al., Energy Storage Mater. 5(2016) 139-164.
doi: 10.1016/j.ensm.2016.07.003
C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, J.J. Zhang, Nano Energy 33(2017) 363-386.
doi: 10.1016/j.nanoen.2017.01.028
H. Ye, S. Xin, Y.X. Yin, Y.G. Guo, Adv. Energy Mater. 7(2017) 1700530.
doi: 10.1002/aenm.v7.23
X.B. Cheng, R. Zhang, C.Z. Zhao, et al., Adv. Sci. 3(2016) 1500213.
doi: 10.1002/advs.201500213
X. Chen, T.Z. Hou, B. Li, et al., Energy Storage Mater. 8(2017) 194-201.
doi: 10.1016/j.ensm.2017.01.003
B.R. Lee, H.J. Noh, S.T. Myung, K. Amine, Y.K. Sun, J. Electrochem. Soc. 164(2016) A180-A186.
C.P. Yang, K. Fu, Y. Zhang, E. Hitz, L.B. Hu, Adv. Mater. 29(2017) 1701169.
doi: 10.1002/adma.201701169
Y.P. Guo, H.Q. Li, T.Y. Zhai, Adv. Mater. 29(2017) 1700007.
doi: 10.1002/adma.201700007
D.R. Ely, R.E. García, J. Electrochem. Soc. 160(2013) A662-A668.
doi: 10.1149/1.057304jes
X.X. Zeng, Y.X. Yin, N.W. Li, et al., J. Am. Chem. Soc. 138(2016) 15825-15828.
doi: 10.1021/jacs.6b10088
X.Q. Zhang, X.B. Cheng, X. Chen, et al., Adv. Funct. Mater. 27(2017) 1605989.
doi: 10.1002/adfm.v27.10
C.Z. Zhao, X.B. Chen, R. Zhang, et al., Energy Storage Mater. 3(2016) 77-84.
doi: 10.1016/j.ensm.2016.01.007
X.B. Cheng, C. Yan, X. Chen, et al., Chemistry 2(2017) 258-270.
doi: 10.1016/j.chempr.2017.01.003
Y. Yamada, K. Furukawa, K. Sodeyama, et al., J. Am. Chem. Soc. 136(2014) 5039-5046.
doi: 10.1021/ja412807w
Z. Tu, P. Nath, Y. Lu, M.D. Tikekar, L.A. Archer, Acc. Chem. Res. 48(2015) 2947-2956.
doi: 10.1021/acs.accounts.5b00427
Y.Y. Lu, S.K. Das, S.S. Moganty, L.A. Archer, Adv. Mater. 24(2012) 4430-4435.
doi: 10.1002/adma.201201953
C. Yan, X.B. Chen, C.Z. Zhao, et al., J. Power Sources 327(2016) 212-220.
doi: 10.1016/j.jpowsour.2016.07.056
J. Wang, F. Lin, H. Jia, et al., Angew. Chem. Int. Ed. 53(2014) 10099-10104.
doi: 10.1002/anie.201405157
H. Wu, Y. Cao, L. Geng, C. Wang, Chem. Mater. 29(2017) 3572-3579.
doi: 10.1021/acs.chemmater.6b05475
K. Fu, Y.H. Gong, B.Y. Liu, et al., Sci. Adv. 3(2016) e1601659.
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2(2017) 16103.
doi: 10.1038/natrevmats.2016.103
Y. Kato, S. Hori, T. Saito, et al., Nat. Energy 1(2016) 16030.
doi: 10.1038/nenergy.2016.30
F.P. McGrogan, T. Swamy, S.R. Bishop, et al., Adv. Energy Mater. 7(2017) 1602011.
doi: 10.1002/aenm.201602011
Q. Ma, H. Zhang, C. Zhou, et al., Angew. Chem. Int. Ed. 55(2016) 2521-2525.
doi: 10.1002/anie.201509299
C.Z. Zhao, X.Q. Zhang, X.B. Chen, et al., Proc. Natl. Acad. Sci. U. S. A.114(2017) 11069-11074.
doi: 10.1073/pnas.1708489114
W.D. Zhou, S.F. Wang, Y.T. Li, et al., J. Am. Chem. Soc. 138(2016) 9385-9388.
doi: 10.1021/jacs.6b05341
Y. Pan, S. Chou, H.K. Liu, S.X. Dou, Natl. Sci. Rev. (2017), doi:http://dx.doi.org/10.1093/nsr/nwx037.
doi: 10.1093/nsr/nwx037
Y. Liu, Q. Liu, L. Xin, et al., Nat. Energy 2(2017) 17083.
doi: 10.1038/nenergy.2017.83
J. Dai, C. Shi, C. Li, et al., Energy Environ. Sci. 9(2016) 3252-3261.
doi: 10.1039/C6EE01219A
S.O. Tung, S. Ho, M. Yang, R. Zhang, N.A. Kotov, Nat. Commun. 6(2015) 6152.
doi: 10.1038/ncomms7152
X. Hao, J. Zhu, X. Jiang, et al., Nano Lett. 16(2016) 2981-2987.
doi: 10.1021/acs.nanolett.5b05133
X. Zhang, X. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.
doi: 10.1016/j.jechem.2016.11.003
X.B. Cheng, H.J. Peng, J.Q. Huang, F. Wei, Q. Zhang, Small 21(2014) 4257-4263.
S. Matsuda, Y. Kubo, K. Uosaki, S. Nakanishi, ACS Energy Lett. 2(2017) 924-929.
doi: 10.1021/acsenergylett.7b00149
W. Liu, Y. Mi, Z. Weng, et al., Chem. Sci. 8(2017) 4285-4291.
doi: 10.1039/C7SC00668C
Y. Zhang, B. Liu, E. Hitz, et al., Nano Res. 10(2017) 1356-1365.
doi: 10.1007/s12274-017-1461-2
C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Liu, Y.G. Guo, Nat. Commun. 6(2015) 8058.
doi: 10.1038/ncomms9058
Q.B. Yun, Y.B. He, W. Lv, et al., Adv. Mater. 28(2016) 6932-6939.
doi: 10.1002/adma.201601409
L.L. Lu, J. Ge, J.N. Yang, et al., Nano Lett. 16(2016) 4431-4438.
doi: 10.1021/acs.nanolett.6b01581
Q. Li, S.P. Zhu, Y.Y. Lu, Adv. Funct. Mater. 27(2017) 1606422.
doi: 10.1002/adfm.201606422
S.H. Wang, Y.X. Yin, T.T. Zuo, et al., Adv. Mater. 29(2017) 1703729.
doi: 10.1002/adma.201703729
Y.M. Sun, G.Y. Zheng, Z.W. She, et al., Chem. 1(2016) 287-297.
doi: 10.1016/j.chempr.2016.07.009
X.B. Cheng, H.J. Peng, J.Q. Huang, et al., ACS Nano 9(2015) 6373-6382.
doi: 10.1021/acsnano.5b01990
A.Y. Zhang, X. Fang, C.F. Shen, Y.H. Liu, C.W. Zhou, Nano Res. 9(2016) 3428-3436.
doi: 10.1007/s12274-016-1219-2
R. Zhang, X.B. Cheng, C.Z. Zhao, et al., Adv. Mater. 28(2016) 2155-2162.
doi: 10.1002/adma.201504117
T.T. Zuo, X.W. Wu, C.P. Yang, et al., Adv. Mater. 29(2017) 1700389.
doi: 10.1002/adma.201700389
R. Zhang, N.W. Liu, X.B. Cheng, et al., Adv. Sci. 4(2017) 1600445.
doi: 10.1002/advs.201600445
H. Ye, S. Xin, Y.X. Yin, Y.G. Guo, Adv. Energy Mater. 7(2017) 1700530.
doi: 10.1002/aenm.v7.23
R. Zhang, X.R. Chen, X. Chen, et al., Angew. Chem. Int. Ed. 56(2017) 7764-7768.
doi: 10.1002/anie.201702099
C.B. Jin, O. Sheng, J.M. Luo, et al., Nano Energy 37(2017) 177-186.
doi: 10.1016/j.nanoen.2017.05.015
C.P. Yang, Y.G. Yao, S.M. He, et al., Adv. Mater. 29(2017) 1702714.
doi: 10.1002/adma.201702714
K. Yan, Z.D. Lu, H.W. Lee, et al., Nat. Energy 1(2016) 16010.
doi: 10.1038/nenergy.2016.10
D.C. Lin, Y.Y. Liu, Z. Liang, et al., Nat. Nanotechnol. 11(2016) 626-632.
doi: 10.1038/nnano.2016.32
Z. Liang, D. Lin, J. Zhao, et al., Proc. Natl. Acad. Sci. U. S. A. 113(2016) 2862-2867.
doi: 10.1073/pnas.1518188113
Y. Zhang, W. Luo, C. Wang, et al., Proc. Natl. Acad. Sci. U. S. A.114(2017) 3584-3589.
doi: 10.1073/pnas.1618871114
S.S. Chi, Y.C. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Adv. Funct. Mater. 27(2017) 1700348.
doi: 10.1002/adfm.v27.24
D.C. Lin, J. Zhao, J. Shun, et al., Proc. Natl. Acad. Sci. U. S. A. 114(2017) 4613-4618.
doi: 10.1073/pnas.1619489114
J. Zhao, G.M. Zhou, K. Yan, et al., Nat. Technol. 12(2017) 993-999.
S. Choudhury, L.A. Archer, Adv. Electron. Mater. 2(2016) 1500246.
doi: 10.1002/aelm.201500246
K. Kanamura, S. Shiraishi, Z. Takehara, J. Fluor. Chem. 87(1998) 235-243.
doi: 10.1016/S0022-1139(97)00151-6
S. Shiraishi, K. Kanamura, Z. Takehara, J. Electrochem. Soc. 146(1999) 1633-1639.
doi: 10.1149/1.1391818
Y.Y. Lu, Z.Y. Tu, L.A. Archer, Nat. Mater. 13(2014) 961-969.
doi: 10.1038/nmat4041
X.Q. Zhang, X. Chen, R. Xu, et al., Angew. Chem. Int. Ed. 56(2017) 14207-14211.
doi: 10.1002/anie.201707093
D.C. Lin, Y.Y. Liu, W. Chen, et al., Nano Lett. 17(2017) 3731-3737.
doi: 10.1021/acs.nanolett.7b01020
Z. Peng, N. Zhao, Z.G. Zhang, et al., Nano Energy 39(2017) 662-672.
doi: 10.1016/j.nanoen.2017.07.052
B. Zhu, Y. Jin, X. Hu, et al., Adv. Mater. 29(2017) 1603755.
doi: 10.1002/adma.v29.2
W. Liu, D. Lin, A. Pei, Y. Cui, J. Am. Chem. Soc. 138(2016) 15443-15450.
doi: 10.1021/jacs.6b08730
X.B. Cheng, T.Z. Hou, R. Zhang, et al., Adv. Mater. 28(2016) 2888-2895.
doi: 10.1002/adma.201506124
Z. Liang, G. Zheng, C. Liu, et al., Nano Lett. 15(2015) 2910-2916.
doi: 10.1021/nl5046318
Y.Y. Liu, D.C. Lin, P.Y. Yuen, et al., Adv. Mater. 29(2017) 1605531.
doi: 10.1002/adma.201605531
C.P. Yang, B.Y. Liu, F. Jiang, et al., Nano Res. (2017), doi:http://dx.doi.org/10.1007/s12274-017-1498-2.
doi: 10.1007/s12274-017-1498-2
M.F. Wu, Z.Y. Wen, Y. Liu, X.Y. Wang, L.Z. Huang, J. Power Sources 196(2011) 8091-8097.
doi: 10.1016/j.jpowsour.2011.05.035
M. Baloch, D. Shanmukaraj, O. Bondarchuk, et al., Energy Storage Mater. 9(2017) 141-149.
doi: 10.1016/j.ensm.2017.06.016
Y.J. Zhang, W. Wang, H. Tang, et al., J. Power Sources 277(2015) 304-311.
doi: 10.1016/j.jpowsour.2014.12.023
Z. Peng, S. Wang, J. Zhou, et al., J. Mater. Chem. A 4(2016) 2427-2432.
doi: 10.1039/C5TA10050J
L. Chen, J.G. Connell, A. Nie, et al., J. Mater. Chem. A 5(2017) 12297-12309.
doi: 10.1039/C7TA03116E
G. Zheng, S.W. Lee, Z. Liang, et al., Nat. Nanotechnol. 9(2014) 618-623.
doi: 10.1038/nnano.2014.152
D. Zhang, Y. Zhou, C. Liu, S.S. Fan, Nanoscale 8(2016) 11161-11167.
doi: 10.1039/C6NR00465B
J.S. Kim, D.W. Kim, H.T. Jung, J.W. Choi, Chem. Mater. 27(2015) 2780-2787.
doi: 10.1021/cm503447u
S.Y. Huang, L. Tang, H.S. Najafabadi, S. Chen, Z.F. Ren, Nano Energy 38(2017) 504-509.
doi: 10.1016/j.nanoen.2017.06.030
Z. Zhang, Z. Peng, J. Zheng, J. et al, Mater. Chem. A 5(2017) 9339-9349.
J. Song, H. Lee, M.J. Choo, J.K. Park, H.T. Kim, Sci. Rep. 5(2015) 14458.
doi: 10.1038/srep14458
N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, Adv. Mater. 28(2016) 1853-1858.
doi: 10.1002/adma.201504526
J. Luo, C.C. Fang, N.L. Wu, Adv. Energy Mater. 6(2017) 1701482.
K. Liu, A. Pei, H. Lee, et al., J. Am. Chem. Soc. 139(2017) 4815-4820.
doi: 10.1021/jacs.6b13314
K. Yan, H.W. Lee, T. Gao, et al., Nano Lett. 14(2014) 6016-6022.
doi: 10.1021/nl503125u
X. Liang, Q. Pang, I.R. Kochetkov, et al., Nat. Energy 2(2017) 17119.
doi: 10.1038/nenergy.2017.119
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Jun Jiang , Tong Guo , Wuxin Bai , Mingliang Liu , Shujun Liu , Zhijie Qi , Jingwen Sun , Shugang Pan , Aleksandr L. Vasiliev , Zhiyuan Ma , Xin Wang , Junwu Zhu , Yongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Xianping Du , Ying Huang , Chen Chen , Zhenhe Feng , Meng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990