Citation: Wu Wei, Song Sen, Cui Xiaowei, Sun Tao, Zhang Jian-Xin, Ni Xin-Long. pH-Switched fluorescent pseudorotaxane assembly of cucurbit[7]uril with bispyridinium ethylene derivatives[J]. Chinese Chemical Letters, ;2018, 29(1): 95-98. doi: 10.1016/j.cclet.2017.08.049 shu

pH-Switched fluorescent pseudorotaxane assembly of cucurbit[7]uril with bispyridinium ethylene derivatives

  • Corresponding author: Ni Xin-Long, longni333@163.com
  • Received Date: 27 May 2017
    Revised Date: 27 July 2017
    Accepted Date: 24 August 2017
    Available Online: 30 January 2017

Figures(6)

  • The host-guest properties of cucurbit[7]uril (Q[7]) and bispyridinium ethylene derivatives have been studied by 1H NMR spectroscopy, UV-vis absorption spectra, and fluorescence emission analysis. The proton shifts associated with the guest encapsulated by the host suggested that the Q[7]-based[2] pseudorotaxane behaves like a fast molecular shuttle along the bispyridinium ethylene axle of the guest upon protonation and deprotonation of the terminal carboxylates. In particular, the distinct fluorescent response signals indicated that the bispyridinium ethylene moiety not only behaves as the axle component for the pseudorotaxane system, but also acts as an optical reporting unit during the host-guest complexation.
  • 加载中
    1. [1]

      (a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 112(2000) 3484-3530;
      (b) M. Gómez-López, J. A. Preece, J. F. Stoddart, Nanotechnology 7(1996) 183-192.

    2. [2]

      (a) R. S. Forgan, J. P. Sauvage, J. F. Stoddart, Chem. Rev. 111(2011) 5434-5464;
      (b) D. H. Qu, H. Tian, Chem. Sci. 2(2011) 1011-1015;
      (c) J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 50(2011) 9260-9327;
      (d) S. H. Li, Y. M. Zhang, Y. Liu, Chin. Sci. Bull. 61(2016) 3917-3923;
      (e) M. Xue, Y. Yang, X. D. Chi, X. Z. Yan, F. H. Huang, Chem. Rev. 115(2015) 7398-7501;
      (f) X. Wu, L. Gao, J. Z. Sun, X. Y. Hu, L. Y. Wang, Chin. Chem. Lett. 27(2016) 1655-1660;
      (g) H. Wang, Z. J. Zhang, H. Y. Zhang, Y. Liu, Chin. Chem. Lett. 24(2013) 563-567;
      (h) L. L. Hu, W. Xue, J. Yin, Chin. Chem. Lett. 27(2016) 155-158.

    3. [3]

      (a) B. Valeur, Molecular Fluorescence: principles and Applications, Wiley-VCH, Weinheim, Germany, 2002;
      (b) V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines-concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim Germany, 2008.

    4. [4]

      (a) H. Wang, X. F. Ji, Z. T. Li, F. H. Huang, Adv. Mater. 29(2017) 1606117;
      (b) H. Zhang, J. Hu, D. H. Qu, Org. Lett. 14(2012) 2334-2337;
      (c) X. F. Ji, Y. Yao, J. Y. Li, X. Z. Yan, F. H. Huang, J. Am. Chem. Soc. 135(2013) 74-77;
      (d) T. T. Cao, X. Y. Yao, J. Zhang, Q. C. Wang, X. Ma, Chin. Chem. Lett. 26(2015) 867-871.

    5. [5]

      (a) J. Kim, I. S. Jung, S. Y. Kim, et al., J. Am Chem. Soc. 122(2000) 540-541;
      (b) A. I. Day, A. P. Arnold, R. J. Blanch, B. Snushall, J. Org. Chem. 66(2001) 8094-8100.

    6. [6]

      (a) S. J. Barrow, S. Kasera, M. J. Rowland, J. D. Barrio, O. A. Scherman, Chem. Rev. 115(2015) 12320-12406;
      (b) X. L. Ni, X. Xiao, H. Cong, et al., Acc. Chem. Res. 47(2014) 1386-1395.

    7. [7]

      (a) W. Zhang, Y. M. Zhang, S. H. Li, et al., Angew. Chem. Int. Ed. 55(2016) 11452-11456;
      (b) M. H. Tootoonchi, G. Sharma, J. Calles, R. Prabhakar, A. E. Kaifer, Chem. Int. Ed. 55(2016) 11507-11511;
      (c) J. Tian, Z. Y. Xu, D. W. Zhang, et al., Nature Commun. 7(2016) 11580;
      (d) Q. Zhang, D. H. Qu, Q. C. Wang, H. Tian, Angew. Chem. Int. Ed. 127(2015) 16015-16019;
      (e) L. C. Smith, D. G. Leach, B. E. Blaylock, O. A. Ali, A. R. Urbach, J. Am. Chem. Soc. 137(2015) 3663-3669;
      (f) H. Li, Y. W. Yang, Chin. Chem. Lett. 24(2013) 545-552.

    8. [8]

      G. Ghale, W.M. Nau, Acc. Chem. Res. 47(2014) 2150-2159.  doi: 10.1021/ar500116d

    9. [9]

      (a) X. L. Ni, S. Y. Chen, Z. Y. P. Yang, J. Am. Tao, Chem. Soc. 138(2016) 6177-6183;
      (b) S. K. Samanta, K. G. Brady, L. Isaacs, Chem. Commun. 53(2017) 2756-2759;
      (c) S. Q. Xu, X. Zhang, C. B. Nie, et al., Chem. Commun. 51(2015) 16417-16420;
      (d) L. H. Wang, Z. J. Zhang, H. Y. Zhang, H. L. Wu, Y. Liu, Chin. Chem. Lett. 24(2013) 949-952;
      (e) A. Singh, W. T. Yip, R. L. Halterman, Org. Lett. 14(2012) 4046-4049;
      (f) O. Buyukcakir, F. T. Yasar, O. A. Bozdemir, B. Icli, E. U. Akkaya, Org. Lett. 15(2013) 1012-1015.

    10. [10]

      K. Kim, Chem. Soc. Rev. 31(2002) 96-107.  doi: 10.1039/a900939f

    11. [11]

      V. Kolman, M.S. Khan, M. Babinský, R. Marek, V. Sindelar, Org. Lett. 13(2011) 6148-6151.  doi: 10.1021/ol2023888

    12. [12]

      H. Yang, Y.L. Liu, K. Liu, et al., Langmuir 29(2013) 12909-12914.  doi: 10.1021/la4025102

    13. [13]

      V. Sindelar, S. Silvi, A.E. Kaifer, Chem. Commun. 20(2006) 2185-2187.

    14. [14]

      (a) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Rev. 115(2015) 11718-11940;
      (b) J. S. Yang, C. K. Lin, A. M. Lahoti, et al., J. Phys Chem. A 113(2009) 4868-4877.

  • 加载中
    1. [1]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    2. [2]

      Huipeng LiXue YangMinjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651

    3. [3]

      Ran ZhuPan ZhangYitong XuJiutong MaQiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259

    4. [4]

      Pei-Pei LiuJia-Bin XingYue-Yang LiuKe FengHui WangDan-Wei ZhangWei ZhouGang ZhaoJiaheng ZhangZhan-Ting Li . Sulfonatoproxylated cucurbit[7]urils as highly water-soluble and biocompatible excipients for solubilizing poorly soluble drugs and improving the bioavailability of indomethacin. Chinese Chemical Letters, 2025, 36(9): 110831-. doi: 10.1016/j.cclet.2025.110831

    5. [5]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    6. [6]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    7. [7]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    8. [8]

      Linnan JiangZhenkai QianYong ChenXiaoyong YuYugui QiuWen-Wen XuYonghui SunXiufang XuLihua WangYu Liu . Double response reversible phosphorescence based on cyclodextrin supramolecular flexible elastic achieved multicolor delayed fluorescence. Chinese Chemical Letters, 2025, 36(8): 110676-. doi: 10.1016/j.cclet.2024.110676

    9. [9]

      Saisai YuanYiming ChenXijuan WangDegui ZhaoTengyang GaoCaiyun WeiChuanxiang ChenYang YangWenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816

    10. [10]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    11. [11]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    12. [12]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    13. [13]

      Lintao WuYujia MengXumei ZhengYiqiao BaiChun HanZhijun WangJie YangXiaobi JingYong Yao . Pillar[5]arene based prodrug as a GSH-responsive SO2 nanogenerator for effective gas cancer therapy. Chinese Chemical Letters, 2025, 36(9): 110808-. doi: 10.1016/j.cclet.2024.110808

    14. [14]

      Xin ZhangZhihao LuTianci RenJunxiang TangShuo LiChenghao ZhuLijun MaoDa Ma . Fluorescent "Texas-sized" macrocyclic receptors for the recognition and detection of nucleotides in water. Chinese Chemical Letters, 2025, 36(11): 110946-. doi: 10.1016/j.cclet.2025.110946

    15. [15]

      Zhijuan NiuPeizhe SunKwangnak KohChangping Li . Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection. Chinese Chemical Letters, 2025, 36(11): 110844-. doi: 10.1016/j.cclet.2025.110844

    16. [16]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    17. [17]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    18. [18]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    19. [19]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    20. [20]

      Zeyuan ZhangZixuan LiChenjing LiuYali HouKe GaoShijin JianGuoping LiGang HeMingming Zhang . Porphyrin metallacage-based host-guest complexation for highly efficient photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111322-. doi: 10.1016/j.cclet.2025.111322

Metrics
  • PDF Downloads(3)
  • Abstract views(1279)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return