Citation: Mao Runvze, Sun Lifeng, Wang Yong-Shi, Zhou Min-Min, Xiong De-Cai, Li Qin, Ye Xin-Shan. N-9 Alkylation of purines via light-promoted and metal-free radical relay[J]. Chinese Chemical Letters, ;2018, 29(1): 61-64. doi: 10.1016/j.cclet.2017.08.005 shu

N-9 Alkylation of purines via light-promoted and metal-free radical relay

  • Corresponding author: Li Qin, liqin@bjmu.edu.cn Ye Xin-Shan, xinshan@bjmu.edu.cn
  • 1These authors contributed equally to this work
  • Received Date: 4 June 2017
    Revised Date: 3 July 2018
    Accepted Date: 14 July 2017
    Available Online: 3 January 2017

Figures(4)

  • A metal-free and light-promoted approach to the synthesis of N-9 alkylated purine nucleoside derivatives, via a CF3 radical triggered radical relay pathway, has been developed. Purine nucleoside derivatives were prepared regioselectively in good to high yields. Photosensitizers and metals are free in this transformation. Visible light or even sunlight can be used as the source of light for the reactions.
  • 加载中
    1. [1]

      (a) R. Garg, S. P. Gupta, H. Gao, et al., Chem. Rev. 99(1999) 3525-3602;
      (b) W. B. Parker, Chem. Rev. 109(2009) 2880-2893.

    2. [2]

      (a) A. J. Wagstaff, D. Faulds, K. L. Goa, Drugs 47(1994) 153-205;
      (b) P. D. Welsby, J. Infect. 28(1994) 121-129;
      (c) A. D. Ruiter, R. N. Thin, Drugs 47(1994) 297-304;
      (d) W. A. Bowles, F. H. Schneider, L. R. R. Lewis, K. Robins, J. Med. Chem. 6(1963) 467-471;
      (e) R. B. Yan, Y. F. Wu, J. Liu, X. L. Zhang, X. S. Ye, Chin. Chem. Lett. 24(2013) 273-278.

    3. [3]

      H. Rosemeyer, Chem. Biodivers. 1(2004) 361-401.  doi: 10.1002/(ISSN)1612-1880

    4. [4]

      (a) R. J. Haslam, M. M. L. Davidson, J. V. Desjardins, Biochem. J. 176(1978) 83-95;
      (b) T. A. Rich, R. C. Shepard, S. T. Mosley, J. Clin Oncol. 22(2004) 2214-2232;
      (c) J. C. Martin, M. J. M. Hitchcock, E. De Clercq, W. H. Prusoff, Antiviral Res. 85(2010) 34-38;
      (d) E. De Clercq, Rev. Med. Virol. 19(2009) 287-299.

    5. [5]

      (a) A. I. Votruba, J. Med Chem. 45(2002) 1918-1929;
      (b) U. Diederichsen, D. Weicherding, N. Diezemanna, Org. Biomol. Chem. 3(2005) 1058-1066;
      (c) G. A. Sheikha, P. L. Colla, A. G. Loi, Nucleosides Nucleotides Nucleic Acids 21(2002) 619-635.

    6. [6]

      N.F. Zakirova, A.V. Shipitsyn, E.F. Belanovb, M.V. Jasko, Med. Bioorg, Chem. Lett. 14(2004) 3357-3360.  doi: 10.1016/j.bmcl.2003.12.107

    7. [7]

      (a) F. Vandendriessche, R. Snoeck, G. Janssen, J. Med. Chem. 35(1992) 1458-1465;
      (b) P. Franchetti, G. A. Sheikha, L. Cappellacci, J. Med. Chem. 38(1995) 4007-4013.

    8. [8]

      H.M. Guo, C. Xia, H.Y. Niu, et al., Adv. Synth. Catal. 353(2011) 53-56.  doi: 10.1002/adsc.201000682

    9. [9]

      I. Buslov, X. Hu, Adv. Synth. Catal. 356(2014) 3325-3330.  doi: 10.1002/adsc.201400646

    10. [10]

      R. Huang, C.S. Xie, L. Huang, J.H. Liu, Tetrahedron 69(2013) 577-582.  doi: 10.1016/j.tet.2012.11.020

    11. [11]

      (a) M. Ochiai, S. Yamane, M. Hoque, M. Saito, K. Miyamoto, Chem. Commun. 48(2012) 5280-5282;
      (b) L. He, J. Yu, J. Zhang, X. Q. Yu, Org. Lett. 9(2007) 2277-2280;
      (c) T. Fuchigami, T. Sato, T. Nonaka, J. Org. Chem. 51(1986) 427-432;
      (d) K. S. Feldman, M. M. Bruendl, K. Schildknegt, A. C. Bohnstedt, J. Org. Chem. 61(1996) 5440-5452;
      (e) H. Kim, J. Kim, S. Cho, S. Chang, J. Am. Chem. Soc. 133(2011) 16382-16385;
      (f) M. Ochiai, K. Miyamoto, T. Kaneaki, S. Hayashi, W. Nakanishi, Science 332(2011) 448-451;
      (g) A. P. Antonchick, R. Samanta, K. Kulikov, J. Lategahn, Angew. Chem Int. Ed. 50(2011) 8605-8608.

    12. [12]

      (a) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 116(2016) 10035-10074;
      (b) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 113(2013) 5322-5363;
      (c) N. A. Romero, D. A. Nicewicz, Chem. Rev. 116(2016) 10075-10166;
      (d) D. M. Arias-Rotondo, J. K. McCusker, Chem. Soc. Rev. 45(2016) 5803-5820.

    13. [13]

      T. Umemoto, Chem. Rev. 96(1996) 1757-1778.  doi: 10.1021/cr941149u

    14. [14]

      B.P. Roberts, Chem. Soc. Rev. 28(1999) 25-35.  doi: 10.1039/a804291h

    15. [15]

      Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 51(2012) 9567-9571.  doi: 10.1002/anie.v51.38

    16. [16]

      (a) E. Arceo, I. D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat. Chem. 5(2013) 750-756;
      (b) S. Mattia, E. Arceo, I. D. Jurberg, C. Cassani, P. Melchiorre, J. Am. Chem. Soc. 137(2015) 6120-6123;
      (c) J. F. Franz, W. B. Kraus, K. Zeitler, Chem. Commun. 51(2015) 8280-8283;
      (d) M. Tobisu, T. Furukawa, N. Chatani, Chem. Lett. 42(2013) 1203-1205.

    17. [17]

      X. Wang, Y. Ye, S. Zhang, et al., J. Am. Chem. Soc. 133(2011) 16410-16413.  doi: 10.1021/ja207775a

    18. [18]

      (a) C. P. Zhang, H. Wang, A. Klein, et al., J. Am. Chem. Soc. 135(2013) 8141-8144;
      (b) R. Z. Mao, D. C. Xiong, F. Guo, et al., Org. Chem. Front. 3(2016) 737-743.

    19. [19]

      S.Z. Zard, Chem. Soc. Rev. 37(2008) 1603-1618.  doi: 10.1039/b613443m

    20. [20]

      Z. Cekovic, J. Serb. Chem. Soc. 70(2015) 287-318.

    21. [21]

      (a) J. C. K. Chu, T. Rovis, Nature 539(2016) 272-275;
      (b) G. J. Choi, Q. L. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 539(2016) 268-271;
      (c) A. Noble, D. W. C. MacMillan, J. Am. Chem. Soc. 136(2014) 11602-11605.

  • 加载中
    1. [1]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    2. [2]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    3. [3]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    4. [4]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    5. [5]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    6. [6]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    7. [7]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    11. [11]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    14. [14]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    15. [15]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    16. [16]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    17. [17]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    18. [18]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    19. [19]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    20. [20]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

Metrics
  • PDF Downloads(3)
  • Abstract views(795)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return