Citation: Li Jing, Hu Yong-Hui, Ge Cong-Wu, Gong He-Gui, Gao Xi-Ke. The role of halogen bonding in improving OFET performance of a naphthalenediimide derivative[J]. Chinese Chemical Letters, ;2018, 29(3): 423-428. doi: 10.1016/j.cclet.2017.06.008 shu

The role of halogen bonding in improving OFET performance of a naphthalenediimide derivative

Figures(6)

  • Controlling microstructure and thin film morphology of organic semiconductors by supramolecular arrangement is critical to improving their device performance. To realize well-controlling supramolecular assembly, a core-expanded naphthalene diimides derivative (1) was designed and synthesized as an n-type organic semiconductor and also as a halogen bonding (XB) donor that could form complementary XBs with 2, 2-dipyridine or 2, 2-bipyrimidine acceptor. The XB interactions in the solid state of 1/2, 2-dipyridine and 1/2, 2-bipyrimidine were confirmed by a series of characterization methods, such as thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR) involving 19F NMR and solid-state 13C NMR. Organic field-effect transistors (OFETs) based on XB complexes 1/2, 2-dipyridine or 1/2, 2-bipyrimidine showed better device performance than that of devices based on pure 1, with the average electron mobility increased more than doubled (from 0.027 cm2 V-1 s-1 to 0.070 cm2 V-1 s-1).
  • 加载中
    1. [1]

      (a) A. R. Murphy, J. M. J. Frechet, Chem. Rev. 107(2007) 1066-1096;
      (b) C. Wang, H. Dong, W. Hu, et al., Chem. Rev. 112(2012) 2208-2267.

    2. [2]

      (a) R. W. Friend, R. W. Gymer, A. B. Holmes, et al., Nature 397(1999) 121-128;
      (b) C. L. Chochos, N. Tagmatarchis, V. G. Gregoriou, RSC Adv. 3(2013) 7160-7181;
      (c) L. Lu, T. Zheng, Q. Wu, et al., Chem. Rev 115(2015) 12666-12731;
      (d) Z. Y. Luo, Z. Y. Lu, Y. Huang, Chin. Chem. Lett. 27(2016) 1223-1230;
      (e) H. W. Luo, Z. T. Liu, Chin. Chem. Lett. 27(2016) 1283-1292.

    3. [3]

      H.T. Black, D.F. Perepichka, Angew. Chem. Int. Ed. 53(2014) 2138-2142.  doi: 10.1002/anie.201310902

    4. [4]

      F.J.M. Hoeben, P. Jonkheijm, E.W. Meijer, et al., Chem. Rev. 105(2005) 1491-1546.  doi: 10.1021/cr030070z

    5. [5]

      (a) M. Chang, D. Choi, B. Fu, et al., ACS Nano 7(2013) 5402-5413;
      (b) J. Lee, J. H. Park, Y. T. Lee, et al., ACS Appl. Mater. Interfaces 6(2014) 4965-4973;
      (c) Y. Lin, Q. Wei, G. Qian, et al., Macromolecules 45(2012) 8665-8673;
      (d) K. H. Lam, T. R. B. Foong, Z. E. Ooi, et al., Interfaces 5(2013) 13265-13274;
      (e) F. Wang, X. Zhang, L. Wang, et al., ACS Appl. Mater. Interfaces 6(2014) 15098-15104.

    6. [6]

      G.R. Desiraju, P.S. Ho, L. Kloo, et al., Pure Appl. Chem. 85(2013) 1711-1713.  doi: 10.1351/PAC-REC-12-05-10

    7. [7]

      (a) L. C. Gilday, S. W. Robinson, T. A. Barendt, et al., Chem. Rev. 115(2015) 7118-7195;
      (b) G. Cavallo, P. Metrangolo, R. Milani, et al., Chem. Rev. 116(2016) 2478-2601.

    8. [8]

      F. Wang, N. Ma, Q. Chen, et al., Langmuir 23(2007) 9540-9542.  doi: 10.1021/la701969q

    9. [9]

      (a) H. L. Yip, H. Ma, A. K. Y. Jen, et al., J. Am. Chem. Soc. 128(2006) 5672-5679;
      (b) P. Jonkheijm, N. Stutzmann, Z. Chen, et al., J. Am. Chem. Soc. 128(2006) 9535-9540;
      (c) M. Gsänger, J. H. Oh, M. Könemann, et al., Angew. Chem. Int. Ed. 49(2010) 740-743;
      (d) M. Bonini, L. Zalewski, E. Orgiu, et al., J. Phys. Chem. C 115(2011) 9753-9759.

    10. [10]

      (a) Y. Kumar, S. Kumar, S. K. Keshri, et al., Org. Lett. 18(2016) 472-475;
      (b) A. Abate, M. Saliba, D. J. Hollman, et al., Nano Lett. 14(2014) 3247-3254.

    11. [11]

      M.A. Kobaisi, S.V. Bhosale, K. Latham, et al., Chem. Rev. 116(2016) 11685-11796.  doi: 10.1021/acs.chemrev.6b00160

    12. [12]

      (a) X. Gao, C. Di, Y. Hu, et al., J. Am. Chem. Soc. 132(2010) 3697-3699;
      (b) X. Hu, X. Gao, C. Di, et al., Chem. Mater. 23(2011) 1204-1215;
      (c) F. Zhang, Y. Hu, T. Schuettfort, et al., J. Am. Chem. Soc. 135(2013) 2338-2349;
      (d) X. Gao, Y. Hu, J. Mater. Chem. C 2(2014) 3099-3117;
      (e) D. Lu, X. C. Yang, B. Leng, et al., Chin. Chem. Lett. 27(2016) 1022-1026.

    13. [13]

      Y. Hu, Y. Qin, X. Gao, et al., Org. Lett. 14(2012) 292-295.  doi: 10.1021/ol203059r

    14. [14]

      L. Gonzalez, N. Gimeno, R.M. Tejedor, et al., Chem. Mater. 25(2013) 4503-4510.  doi: 10.1021/cm401849f

    15. [15]

      R. Bertani, P. Metrangolo, A. Moiana, et al., Adv. Mater. 14(2002) 1197-1201.  doi: 10.1002/1521-4095(20020903)14:17<1197::AID-ADMA1197>3.0.CO;2-V

    16. [16]

      (a) X. Zhou, S. H. Goh, S. Y. Lee, et al., Appl. Surf. Sci. 119(1997) 60-66;
      (b) J. Xu, X. Liu, J. K. P. Ng, et al., J. Mater. Chem. 16(2006) 3540-3545.

    17. [17]

      (a) M. T. Messina, P. Metrangolo, W. Panzeri, et al., Tetrahedron Lett. 39(1998) 9069-9072;
      (b)M. T. Messina, P. Metrangolo, W. Panzeri, et al., Tetrahedron 57(2001)8543-8550;
      (c) M. T. Messina, P. Metrangolo, W. Navarrini, et al., J. Mol. Struct. 524(2000) 87-94.

    18. [18]

      B. Ji, W. Wang, D. Deng, et al., Cryst. Growth Des. 11(2011) 3622-3628.  doi: 10.1021/cg200603z

    19. [19]

      (a) K. Bouchmella, S. G. Dutremez, B. Alonso, et al., Cryst. Growth Des. 8(2008) 3941-3950;
      (b) D. L. Bryce, J. Viger-Gravel, Top. Curr. Chem. 358(2015) 183-203.

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    3. [3]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    4. [4]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    5. [5]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    6. [6]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    7. [7]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    8. [8]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    9. [9]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    10. [10]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    11. [11]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    12. [12]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    13. [13]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    14. [14]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    15. [15]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    16. [16]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    17. [17]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    18. [18]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    19. [19]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    20. [20]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

Metrics
  • PDF Downloads(0)
  • Abstract views(708)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return