Multi-channel microfluidic chip-mass spectrometry platform for cell analysis
- Corresponding author: Lin Jin-Ming, jmlin@mail.tsinghua.edu.cn
Citation:
Jie Mingsha, Mao Sifeng, Haifang Li, Lin Jin-Ming. Multi-channel microfluidic chip-mass spectrometry platform for cell analysis[J]. Chinese Chemical Letters,
;2017, 28(8): 1625-1630.
doi:
10.1016/j.cclet.2017.05.024
Wilhelm M., Schlegl J., Hahne H.. Mass-spectrometry-based draft of the human proteome[J]. Nature, 2014,509:582-587. doi: 10.1038/nature13319
Yadav M., Jhunjhunwala S., Phung Q.T.. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing[J]. Nature, 2014,515:572-576. doi: 10.1038/nature14001
Duncombe T.A., Tentori A.M., Herr A.E.. Microfluidics:reframing biological enquiry[J]. Nat. Rev. Mol. Cell Biol., 2015,16:554-567. doi: 10.1038/nrm4041
Esch E.W., Bahinski A., Huh D.. Organs-on-chips at the frontiers of drug discovery[J]. Nat. Rev. Drug Discov., 2015,14:248-260. doi: 10.1038/nrd4539
Sackmann E.K., Fulton A.L., Beebe D.J.. The present and future role of microfluidics in biomedical research[J]. Nature, 2014,507:181-189. doi: 10.1038/nature13118
Zhu Y., Fang Q.. Analytical detection techniques for droplet microfluidics-a review[J]. Anal. Chim. Acta, 2013,787:24-35. doi: 10.1016/j.aca.2013.04.064
Brink F.T.G.V.D., Olthuis W., Berg A.V.D., Odijk M.. Miniaturization of electrochemical cells for mass spectrometry[J]. Trends Anal. Chem., 2015,70:40-49. doi: 10.1016/j.trac.2015.01.014
Oedit A., Vulto P., Ramautar R., Lindenburg P.W., Hankemeier T.. Lab-on-a-Chip hyphenation with mass spectrometry:strategies for bioanalytical applications[J]. Curr. Opin. Biotechnol., 2014,31:79-85.
He X., Chen Q., Zhang Y., Lin J.M.. Recent advances in microchip-mass spectrometry for biological analysis[J]. Trends Anal. Chem., 2014,53:84-97. doi: 10.1016/j.trac.2013.09.013
Gao D., Liu H., Jiang Y., Lin J.M.. Recent developments in microfluidic devices for in vitro cell culture for cell-biology research[J]. Trends Anal. Chem., 2012,35:150-164. doi: 10.1016/j.trac.2012.02.008
Lin L., Lin J.M.. Development of cell metabolite analysis on microfluidic platform[J]. J. Pharm. Anal., 2015,5:337-347. doi: 10.1016/j.jpha.2015.09.003
Gao D., Wei H., Guo G.S., Lin J.M.. Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer[J]. Anal. Chem., 2010,82:5679-5685. doi: 10.1021/ac101370p
Liu W., Lin J.M.. Online monitoring of lactate efflux by multi-channel microfluidic chip-mass spectrometry for rapid drug evaluation[J]. ACS Sens, 2016:344-347.
Liu W., Wang N., Lin X., Ma Y., Lin J.M.. Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture[J]. Anal. Chem., 2014,86:7128-7134. doi: 10.1021/ac501678q
Xue Q., Foret F., Dunayevskiy Y.M.. Multichannel microchip electrospray mass spectrometry[J]. Anal. Chem., 1997,69:426-430. doi: 10.1021/ac9607119
Ramsey R.S., Ramsey J.M.. Generating electrospray from microchip devices using electroosmotic pumping[J]. Anal. Chem., 1997,69:1174-1178. doi: 10.1021/ac9610671
Koster S., Verpoorte E.. A decade of microfluidic analysis coupled with electrospray mass spectrometry:an overview[J]. Lab Chip, 2007,7:1394-1412. doi: 10.1039/b709706a
Yin H., Killeen K., Brennen R.. Microfluidic chip for peptide analysis with an integrated hplc column sample enrichment column, and nanoelectrospray tip[J]. Anal. Chem., 2010,77:527-533.
Kim J.S., Knapp D.R.. Miniaturized multichannel electrospray ionization emitters on poly(dimethylsiloxane) microfluidic devices[J]. Electrophoresis, 2001,22:3993-3999. doi: 10.1002/(ISSN)1522-2683
Bings N.H., Wang C., Skinner C.D.. Microfluidic devices connected to fused-silica capillaries with minimal dead volume[J]. Anal. Chem., 1999,71:3292-3296. doi: 10.1021/ac981419z
Wei H., Li H., Lin J.M.. Analysis of herbicides on a single C(30) bead via a microfluidic device combined with electrospray ionization quadrupole timeof-flight mass spectrometer[J]. J. Chromatogr. A, 2009,1216:9134-9142. doi: 10.1016/j.chroma.2009.05.091
Gao D., Wei H., Guo G.S., Lin J.M.. Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer[J]. Anal. Chem., 2010,82:5679-5685. doi: 10.1021/ac101370p
Li A., Wang H., Ouyang Z., Cooks R.G.. Paper spray ionization of polar analytes using non-polar solvents[J]. Chem. Commun., 2011,47:2811-2813. doi: 10.1039/c0cc05513a
Liu W., Mao S., Wu J., Lin J.M.. Development and applications of paper-based electrospray ionization-mass spectrometry for monitoring of sequentially generated droplets[J]. Analyst, 2013,138:2163-2170. doi: 10.1039/c3an36404f
Liu W., Chen Q., Lin X., Lin J.M.. Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein-protein interactions[J]. Analyst, 2015,140:1551-1554. doi: 10.1039/C4AN02370F
Freire S.L., Wheeler A.R.. Proteome-on-a-chip:mirage or on the horizon[J]. Lab Chip, 2006,6:1415-1423. doi: 10.1039/b609871a
Chambers A.G., Ramsey J.M.. Microfluidic dual emitter electrospray ionization source for accurate mass measurements[J]. Anal. Chem., 2012,84:1446-1451. doi: 10.1021/ac202603s
Aijian A.P., Chatterjee D., Garrell R.L.. Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis[J]. Lab Chip, 2012,12:2552-2559. doi: 10.1039/c2lc21135a
Li J., Kelly J.F., Chernushevich I., Harrison D.J., Thibault P.. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry[J]. Anal. Chem., 2000,72:599-609. doi: 10.1021/ac990986z
Rossier J.S., Youhnovski N., Lion N.. Thin-chip microspray system for high-performance Fourier-transform ion-cyclotron resonance mass spectrometry of biopolymers[J]. Angew. Chem. Int. Ed., 2003,42:54-58.
Hoffmann P., usig U. Hä, Schulze P., Belder D.. Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer[J]. Angew. Chem. Int. Ed., 2007,46:4913-4916. doi: 10.1002/(ISSN)1521-3773
Gao D., Li H., Wang N., Lin J.M.. Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer[J]. Anal. Chem., 2012,84:9230-9237.
Su Y., Zhu Y., Fang Q.. A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry[J]. Lab Chip, 2013,13:1876-1882. doi: 10.1039/c3lc00063j
Yue G.E., Roper M.G., Jeffery E.D.. Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry[J]. Lab Chip, 2005,5:619-627. doi: 10.1039/b502446c
Sun X., Kelly R.T., Tang K., Smith R.D.. Membrane-based emitter for coupling microfluidics with ultrasensitive nanoelectrospray ionization-mass spectrometry[J]. Anal. Chem., 2011,83:5797-5803. doi: 10.1021/ac200960h
Mao P., Wang H.T., Yang P., Wang D.. Multinozzle emitter arrays for nanoelectrospray mass spectrometry[J]. Anal. Chem., 2011,83:6082-6089. doi: 10.1021/ac2011813
Venter A., Nefliu M., Cooks R.G.. Ambient desorption ionization mass spectrometry[J]. Trends Anal. Chem., 2008,27:284-290. doi: 10.1016/j.trac.2008.01.010
Podgorski D.C., Hamdan R., Mckenna A.M.. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Anal. Chem., 2012,84:1281-1287. doi: 10.1021/ac202166x
Liu J., Wang H., Manicke N.E.. Development characterization, and application of paper spray ionization[J]. Anal. Chem., 2010,82:2463-2471. doi: 10.1021/ac902854g
Chen Q., He Z., Liu W.. Engineering cell-compatible paper chips for cell culturing drug screening, and mass spectrometric sensing[J]. Adv. Healthc. Mater., 2015,4:2291-2296. doi: 10.1002/adhm.201500383
Wu J., Jie M., Dong X., Qi H., Lin J.M.. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform[J]. Rapid Commun. Mass Spectrom., 2016,30:80-86. doi: 10.1002/rcm.7643
Espy R.D., Teunissen S.F., Manicke N.E.. Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood[J]. Anal. Chem., 2014,86:7712-7718. doi: 10.1021/ac5016408
Xie W., Gao D., Jin F., Jiang Y., Liu H.. Study of phospholipids in single cells using an integrated microfluidic device combined with matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal. Chem., 2015,87:7052-7059. doi: 10.1021/acs.analchem.5b00010
Lazar I.M., Kabulski J.L.. Microfluidic LC device with orthogonal sample extraction for on-chip MALDI-MS detection[J]. Lab Chip, 2013,13:2055-2065. doi: 10.1039/C3LC50190F
Yang M., Nelson R., Ros A.. Toward analysis of proteins in single cells:a quantitative approachemployingisobaric tags withMALDI mass spectrometry realized with a microfluidic platform[J]. Anal. Chem., 2016,88:6672-6679. doi: 10.1021/acs.analchem.5b03419
Moon H., Wheeler A.R., Garrell R.L., Loo J.A., Kim C.J.. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS[J]. Lab Chip, 2006,6:1213-1219. doi: 10.1039/b601954d
Korenaga A., Chen F., Li H., Uchiyama K., Lin J.M.. Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry[J]. Talanta, 2016,162:474-478.
Wu J., Jie M., Li H.. Gold nanoparticles modified porous silicon chip for SALDI-MS determination of glutathione in cells[J]. Talanta, 2017,168:222-229. doi: 10.1016/j.talanta.2017.02.041
Kang D.K., Ali M.M., Zhang K., Pone E.J., Zhao W.. Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy[J]. Trends Anal. Chem., 2014,58:145-153. doi: 10.1016/j.trac.2014.03.006
Brouzes E., Medkova M., Savenelli N.. Droplet microfluidic technology for single-cell high-throughput screening[J]. Proc. Natl. Acad. Sci. U. S. A., 2009,106:14195-14200. doi: 10.1073/pnas.0903542106
Mazutis L., Gilbert J., Ung W.L.. Single-cell analysis and sorting using droplet-based microfluidics[J]. Nat. Protoc., 2013,8:870-891. doi: 10.1038/nprot.2013.046
Chen Q., Utech S., Chen D.. Controlled assembly of heterotypic cells in a core-shell scaffold:organ in a droplet[J]. Lab Chip, 2016,16:1346-1349. doi: 10.1039/C6LC00231E
Chen Q., Chen D., Wu J., Lin J.M.. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold[J]. Biomicrofluidics, 2016,10064115. doi: 10.1063/1.4972107
Gao D., Liu H., Lin J.M., Wang Y., Jiang Y.. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device[J]. Lab Chip, 2012,13:978-985.
Chen Q., Wu J., Zhang Y., Lin J.M.. Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry[J]. Anal. Chem., 2012,84:1695-1701. doi: 10.1021/ac300003k
Wei H., Li H., Mao S., Lin J.M.. Cell signaling analysis by mass spectrometry under coculture conditions on an integrated microfluidic device[J]. Anal. Chem., 2011,83:9306-9313. doi: 10.1021/ac201709f
Zhang J., Wu J., Li H., Chen Q., Lin J.M.. An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detector[J]. Biosens. Bioelectron., 2015,68:322-328. doi: 10.1016/j.bios.2015.01.013
Gouveia M.J., Santos J., Brindley P.J.. Estrogen-like metabolites and DNAadducts in urogenital schistosomiasis-associated bladder cancer[J]. Cancer Lett., 2015,359:226-232. doi: 10.1016/j.canlet.2015.01.018
Mcknight T.R., Yoshihara H.A., Sitole L.J.. A combined chemometric and quantitative NMR analysis of HIV/AIDS serum discloses metabolic alterations associated with disease status[J]. Mol. Biosyst., 2014,10:2889-2897. doi: 10.1039/C4MB00347K
J.Zhang , Chen F., He Z.. A novel approachfor preciselycontrolledmultiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion[J]. Analyst, 2016,141:2940-2947. doi: 10.1039/C6AN00395H
Mao S., Zhang J., Li H., Lin J.M.. Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication[J]. Anal. Chem., 2013,85:868-876. doi: 10.1021/ac303164b
Jie M., Li H.F., Lin L., Zhang J., Lin J.M.. Integrated microfluidic system for cell coculture and simulation of drug metabolism[J]. RSC Adv., 2016,6:54564-54572. doi: 10.1039/C6RA10407J
Wu Q., Gao D., Wei J.. Development of a novel multi-layer microfluidic device towards characterization of drug metabolism and cytotoxicity for drug screening[J]. Chem. Commun., 2014,50:2762-2764. doi: 10.1039/C3CC49771B
Kelly R.T., Page J.S., Marginean I., Tang K., Smith R.D.. Dilution-free analysis from picoliter droplets by Nano-ESI MS[J]. Angew. Chem. Int. Ed., 2009,121:6964-6967. doi: 10.1002/ange.v121:37
Weiwei He , Hongbo Zhang , Xudong Lin , Lili Zhu , Tingting Zheng , Hao Pei , Yang Tian , Min Zhang , Guoyue Shi , Lei Wu , Jianlong Zhao , Gulinuer Wumaier , Shengqing Li , Yufang Xu , Honglin Li , Xuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
Yue Mao , Zhonghang Chen , Tiankai Sun , Wenyue Cui , Peng Cheng , Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353
Wantong Zhang , Zixing Xu , Guofei Dai , Zhijian Li , Chunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135
Chaohui Zheng , Jing Xi , Shiyi Long , Tianpei He , Rui Zhao , Xinyuan Luo , Na Chen , Quan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867