Citation: Chi Shuai-Jie, Chen Liang, Li Hong-Xiang, Liu Jian-Gang, Yu Xin-Hong, Han Yan-Chun. To improve alignment of isoindigo-based conjugated polymer film by controlling contact line receding velocity[J]. Chinese Chemical Letters, ;2017, 28(8): 1663-1669. doi: 10.1016/j.cclet.2017.05.021 shu

To improve alignment of isoindigo-based conjugated polymer film by controlling contact line receding velocity

  • Corresponding author: Liu Jian-Gang, niitawh@ciac.ac.cn Han Yan-Chun, ychan@ciac.ac.cn
  • Received Date: 8 January 2017
    Revised Date: 19 April 2017
    Accepted Date: 27 April 2017
    Available Online: 25 August 2017

Figures(9)

  • The macroscopic alignment of conjugated polymers with low grain boundary is essential to carrier transport. During film forming process, the match between contact line receding velocity and the critical alignment velocity is essential to get the alignment polymer film. In this paper, the contact line receding velocity of a D-A conjugated polymer film, isoindigo and bithiophene (ⅡDDT-C3), was adjusted by solvent vapor content and film-formation temperature. Only when solvent vapor content was 0.3 mL and the film-formation temperature was 90℃, the contact line receding velocity was in accordance with the critical alignment velocity, and the highest degree of alignment was attained in the ⅡDDT-C3 film, with the dichroic ratio up to 4.08. Fibers were aligned parallel with the direction of the contact line receding and the molecules of ⅡDDT-C3 adopted an edge-on orientation with the backbone parallel with the direction of fiber long axis. The π-π stacking distance between adjacent molecules was 3.63 Å.
  • 加载中
    1. [1]

      Sirringhaus H.. 25th Anniversary article:organic field-effect transistors:the path beyond amorphous silicon[J]. Adv. Mater., 2014,26:1319-1335. doi: 10.1002/adma.201304346

    2. [2]

      Olivier Y., Niedzialek D., Lemaur V.. 25th anniversary article:highmobility hole and electron transport conjugated polymers:how structure defines function[J]. Adv. Mater., 2014,26:2119-2136. doi: 10.1002/adma.v26.14

    3. [3]

      Dutta G.K., Han A.R., Lee J.. Visible-near infrared absorbing polymers containing thienoisoindigo and electron-rich units for organic transistors with tunable polarity[J]. Adv. Funct. Mater., 2013,23:5317-5325. doi: 10.1002/adfm.v23.42

    4. [4]

      Li Y., Li M., Su Y.. et al, Liquid crystal character controlled by complementary discotic molecules mixtures:columnar stacking type and mesophase temperature range[J]. Chin. Chem. Lett., 2016,27:475-480. doi: 10.1016/j.cclet.2015.12.024

    5. [5]

      Gao X., Liu J., Sun Y., Xing R., Han Y.. Effects of aggregation of poly(3-hexylthiophene) in solution on uniaxial alignment of nanofibers during zone casting[J]. Chin. Chem. Lett., 2013,24:23-27. doi: 10.1016/j.cclet.2013.01.014

    6. [6]

      Gao X., Han Y.. P3HT stripe structure with oriented nanofibrils enabled by controlled inclining evaporation[J]. Chin. J. Polym. Sci., 2013,31:610-619. doi: 10.1007/s10118-013-1259-y

    7. [7]

      Gao X., Xing R., Liu J., Han Y.. Uniaxial alignment of poly(3-hexylthiophene) nanofibers by zone-casting approach[J]. Chin. J. Polym. Sci., 2013,31:748-759. doi: 10.1007/s10118-013-1284-x

    8. [8]

      Sun Y., Liu J., Ding Y., Han Y.. Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates[J]. Chin. J. Polym. Sci., 2013,31:1029-1037. doi: 10.1007/s10118-013-1295-7

    9. [9]

      Chi S., Chen L., Liu J.. Influence of bifurcation position and length of side chains on the structure of isoindigo-based conjugated polymer thin films[J]. Chin. Chem. Lett., 2017,28:333-337. doi: 10.1016/j.cclet.2016.09.005

    10. [10]

      Guo X., Facchetti A., Marks T.J.. Imide-and amide-functionalized polymer semiconductors[J]. Chem. Rev., 2014,14:8943-9021.  

    11. [11]

      Pearson A.J., Wang T., Dunbar A.D.F.. Morphology development in amorphous polymer:fullerene photovoltaic blend films during solution casting[J]. Adv. Funct. Mater., 2014,24:659-667. doi: 10.1002/adfm.201301922

    12. [12]

      Li Y., Li H., Chen H.. Controlling crystallite orientation of diketopyrrolopyrrole-based small molecules in thin films for highly reproducible multilevel memor[J]. Adv. Funct. Mater., 2015,25:4246-4254. doi: 10.1002/adfm.v25.27

    13. [13]

      Street R.A.. Unraveling charge transport in conjugated polymers[J]. Science, 2013,341:1072-1073. doi: 10.1126/science.1242935

    14. [14]

      Noriega R., Rivnay J., Vandewal K.. A general relationship between disorder, aggregation and charge transport in conjugated polymers[J]. Nat. Mater., 2013,12:1038-1044. doi: 10.1038/nmat3722

    15. [15]

      Zhang X., Bronstein H., Kronemeijer A.J.. Molecular origin of high fieldeffect mobility in an indacenodithiophene-benzothiadiazole copolymer[J]. Nat. Commun, 2013,42238.  

    16. [16]

      Takacs C.J., Treat N.D., Kramer S.. Remarkable order of a highperformance polymer[J]. Nano Lett., 2013,13:2522-2527. doi: 10.1021/nl4005805

    17. [17]

      Song P., Li Y., Ma F.. Insight into external electric field dependent photoinduced intermolecular charge transport in BHJ solar cell materials[J]. J. Mater. Chem. C, 2015,3:4810-4819. doi: 10.1039/C5TC00920K

    18. [18]

      Wang H., Chen L., Xing R.. Simultaneous control over both molecular order and long-range alignment in films of the donor-acceptor copolymer[J]. Langmuir, 2015,31:469-479. doi: 10.1021/la5037772

    19. [19]

      Yuan Y., Giri G., Ayzner A.L.. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method[J]. Nat. Commun, 2014,53005.  

    20. [20]

      Amundson, B.J.Sapjeta, A.J.Lovinger. An in-plane anisotropic organic semiconductor based upon poly(3-hexyl thiophene)[J]. Thin Solid Films, 2002,414:143-149. doi: 10.1016/S0040-6090(02)00338-3

    21. [21]

      Derue G., Serban D.A., Lecl P., re è. Controlled nanorubbing of polythiophene thin films for field-effect transistors[J]. Org. Electron., 2008,9:821-828. doi: 10.1016/j.orgel.2008.05.024

    22. [22]

      Zhu R., Kumar A., Yang Y.. Polarizing organic photovoltaics[J]. Adv. Mater., 2011,23:4193-4198. doi: 10.1002/adma.201101514

    23. [23]

      Soeda J., Matsui H., Okamoto T.. Highly oriented polymer semiconductor films compressed at the surface of ionic liquids for high-performance polymeric organic field-effect transistors[J]. Adv. Mater., 2014,26:6430-6435. doi: 10.1002/adma.201401495

    24. [24]

      Tseng H.R., Phan H., Luo C.. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers[J]. Adv. Mater., 2014,26:2993-2998. doi: 10.1002/adma.201305084

    25. [25]

      Kim D.H., Jang Y., Park Y.D.. Surface-induced conformational changes in poly(3-hexylthiophene) monolayer films[J]. Langmuir, 2005,21:3203-3206. doi: 10.1021/la047061l

    26. [26]

      Skrypnychuk V., Boulanger N., Yu V.. Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene[J]. Adv. Funct. Mater., 2015,25:664-670. doi: 10.1002/adfm.201403418

    27. [27]

      Lin C., Liub C.-L., Chen W.. Poly(3-hexylthiophene)/graphene composites based aligned nanofibers forhigh performance field effect transistors[J]. J. Mater. Chem. C, 2015,3:4290-4296. doi: 10.1039/C5TC00399G

    28. [28]

      Sirringhaus H., Wilson R.J., Friend R.H.. Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase[J]. Appl. Phys. Lett., 2000,77:406-408. doi: 10.1063/1.126991

    29. [29]

      Samitsu S., Takanishi Y., Yamamoto J.. Self-assembly and one-dimensional alignment of a conducting polymer nanofiber in a nematic liquid crystal[J]. Macromolecules, 2009,42:4366-4368. doi: 10.1021/ma900826h

    30. [30]

      Brinkmann M., Wittmann J.C.. Orientation of regioregular poly(3-hexylthiophene) by directional solidification:a simple method to reveal the semicrystalline structure of a conjugated polymer[J]. Adv. Mater., 2006,18:860-863. doi: 10.1002/(ISSN)1521-4095

    31. [31]

      Anokhin D.V., Rosenthal M., Makowski T.. Comparative structural study of thin films of a columnar liquid crystal aligned by mechanical shearing and zone casting[J]. Thin Solid Films, 2008,17:982-985.  

    32. [32]

      Wade J., Steiner F., Niedzialek D.. Charge mobility anisotropy of functionalized pentacenes in organic field effect transistors fabricated by solution processing[J]. J. Mater. Chem. C, 2014,2:10110-10115. doi: 10.1039/C4TC01353K

    33. [33]

      Pisula W., Menon A., Stepputat M.. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri hexabenzocoronene[J]. Adv. Mater., 2005,17:684-689. doi: 10.1002/adma.200401171

    34. [34]

      Xue L., Gao X., Zhao K.. The formation of different structures of poly(3-hexylthiophene) film on a patterned substrate by dip coating from aged solution[J]. Nanotechnology, 2010,21145303. doi: 10.1088/0957-4484/21/14/145303

    35. [35]

      Wang S., Kiersnowski A., Pisula W.. Microstructure evolution and device performance in solution-processed polymeric field-effect transistors:the key role of the first monolayer[J]. J. Am. Chem. Soc., 2012,134:4015-4018. doi: 10.1021/ja211630w

    36. [36]

      DeLongchamp D.M., Kline R.J., Jung Y.. Controlling the orientation of terraced nanoscale ribbons of a poly(thiophene) semiconductor[J]. ACS Nano, 2009,3:780-787. doi: 10.1021/nn800574f

    37. [37]

      Giri G., Verploegen E., Mannsfeld S.C.. Tuning charge transport in solution-sheared organic semiconductors using lattice strain[J]. Nature, 2011,480:504-508. doi: 10.1038/nature10683

    38. [38]

      Diao Y., Tee B.C.-K., Giri G.. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains[J]. Nat. Mater., 2013,12:665-671. doi: 10.1038/nmat3650

    39. [39]

      Giri G., DeLongchamp D.M., Reinspach J.. Effect of solution shearing method on packing and disorder of organic semiconductor polymers[J]. Chem. Mater., 2015,27:2350-2359. doi: 10.1021/cm503780u

    40. [40]

      Shin J., Hong T.R., Lee T.W.. Template-guided solution-shearing method for enhanced charge carrier mobility in diketopyrrolopyrrole-based polymer field-effect transistors[J]. Adv. Mater., 2014,26:6031-6035. doi: 10.1002/adma.201401179

    41. [41]

      Lei T., Cao Y., Fan Y.. High-performance air-stable organic field-effect transistors:isoindigo-based conjugatedpolymers[J]. J. Am. Chem. Soc., 2011,133:6099-6101. doi: 10.1021/ja111066r

    42. [42]

      Mei J., Kim do H., Ayzner A.L.. Siloxane-terminated solubilizing side chains:bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors[J]. J. Am. Chem. Soc., 2011,133:20130-20133. doi: 10.1021/ja209328m

    43. [43]

      Lei T., Dou J.H., Ma Z.J.. Siloxane-terminated solubilizing side chains:bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors[J]. J. Am. Chem. Soc., 2012,134:20025-20028. doi: 10.1021/ja310283f

    44. [44]

      Glowacki E.D., Voss G., Sariciftci N.S.. 25th Anniversary article:progress in chemistry and applications of functional indigos for organic electronics[J]. Adv. Mater., 2013,25:6783-6800. doi: 10.1002/adma.v25.47

    45. [45]

      Lei T., Dou J.H., Cao X.Y.. A BDOPV-based donor-acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors[J]. Adv. Mater., 2013,25:6589-6593. doi: 10.1002/adma.201302278

    46. [46]

      Kim G., Kang S.J., Dutta G.K.. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors[J]. J. Am. Chem. Soc, 2014,136:9477-9483. doi: 10.1021/ja504537v

    47. [47]

      Rogowski R.Z., Darhuber A.A.. Crystal growth near moving contact lines on homogeneous and chemically patterned surfaces[J]. Langmuir, 2010,26:11485-11493. doi: 10.1021/la101002x

  • 加载中
    1. [1]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    2. [2]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    3. [3]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    4. [4]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    5. [5]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    6. [6]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    7. [7]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    8. [8]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    9. [9]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    10. [10]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    11. [11]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    12. [12]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    15. [15]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    18. [18]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    19. [19]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    20. [20]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

Metrics
  • PDF Downloads(2)
  • Abstract views(706)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return