Citation: Hou Qing-Qing, Jing Yi-Fei, Shao Xu-Sheng. Synthesis and insecticidal activities of 1, 8-naphthyridine derivatives[J]. Chinese Chemical Letters, ;2017, 28(8): 1723-1726. doi: 10.1016/j.cclet.2017.05.016 shu

Synthesis and insecticidal activities of 1, 8-naphthyridine derivatives

  • Corresponding author: Shao Xu-Sheng, shaoxusheng@ecust.edu.cn
  • Received Date: 28 February 2017
    Revised Date: 1 April 2017
    Accepted Date: 15 May 2017
    Available Online: 17 August 2017

Figures(2)

  • 1, 8-Naphthyridines (NAP) are biological important scaffolds in bioactive molecules design. By hybrid of NAP with neonicotinoid core structure, nine novel NAP derivatives were synthesized and subjected to insecticidal activities evaluation. Some of the compounds showed excellent insecticidal activity against cowpea aphids (Aphis craccivora) with LC50 values ranging from 0.011 mmol/L to 0.067 mmol/L. The results indicated that 1, 8-naphthyridine can be used as insecticidal structure for further modification.
  • 加载中
    1. [1]

      Wang K., Qian X., Cui J.. ChemInform abstract:design, synthesis, and bioactivity of cyanonitrovinyl neonicotinoids as potential insecticides[J]. Cheminform, 2011,42:1117-1122.  

    2. [2]

      Furlan L., Kreutzweiser D.. Alternatives to neonicotinoid insecticides for pest control:case studies in agriculture and forestry[J]. Environ. Sci. Pollut. Res., 2015,22:135-147. doi: 10.1007/s11356-014-3628-7

    3. [3]

      Nauen R., Denholm I.. Resistance of insect pests to neonicotinoid insecticides:Current status and future prospects[J]. Arch. Insect Biochem. Physiol., 2005,58:200-215. doi: 10.1002/(ISSN)1520-6327

    4. [4]

      Liu X., Wu X., Long Z.. Photodegradation of imidacloprid in aqueous solution by metal-free catalyst graphitic carbon nitride using an energy-saving lamp[J]. J. Agri. Food. Chem., 2015,19:4754-4760.  

    5. [5]

      Li Z., Shao X., Sun F., Zhu F.. One-Pot, Three-component synthesis of 1, 8-naphthyridine derivatives from heterocyclic ketene aminals, malononitrile dimer, and aryl aldehydes[J]. Synlett, 2015,26:2306-2312. doi: 10.1055/s-00000083

    6. [6]

      Fu L., Feng X., Wang J.J.. Efficient synthesis and evaluation of antitumor activities of novel functionalized 18-naphthyridine derivatives[J]. Acs. Comb. Sci., 2015,17:24-31. doi: 10.1021/co500120b

    7. [7]

      Jeanneau E., Nicolle -, Benoit M., Guyod -, Namil A., Leclerc G.. New thiazolo[32-a] pyrimidine derivatives, synthesis and structure-activity relationships[J]. Eur. J. Med. Chem., 1992,27:115-120. doi: 10.1016/0223-5234(92)90099-M

    8. [8]

      Tsuzuki Y., Tomita K., Shibamori K.. Synthesis and structure-activity relationships of novel 7-substituted 14-dihydro-4-oxo-1-(2-thiazolyl)-1. 8-naphthyridine-3-carboxylic acids as antitumor agents. Part 2[J]. J. Med. Chem., 2002,45:5564-5575. doi: 10.1021/jm010057b

    9. [9]

      Yang L., Wang S., Sun D.. Development of a biomimetic chondroitin sulfate-modified hydrogel to enhance the metastasis of tumor cells[J]. Sci. Rep., 2016,6:1-13. doi: 10.1038/s41598-016-0001-8

    10. [10]

      Santilli A.A., Scotese A.C., Yurchenco J.A.. ChemInform Abstract:synthesis and antibacteial evaluation of 1, 2, 3, -tetrahydro-4-oxo-1, 8-naphthridine-3-carboxylic acid esters, carbonitriles, and carboxamides[J]. J. Med. Chem., 1976,7:1038-1041.

    11. [11]

      Nishigaki S., Mizushima N., Yoneda F.. Synthetic antibacterials. 3. Nitrofurylvinyl-18-naphthyridine derivatives[J]. J. Med. Chem., 1971,14:638-640.

    12. [12]

      Singh S.B., Kaelin D.E., Meinke P.T.. Structure activity relationship of C-2 ether substituted 15-naphthyridine analogs of oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-5)[J]. Bioorg. Med. Chem. Lett., 2015,17:3630-3635.  

    13. [13]

      Gao L.Z., Xie Y.S., Li T., Huang W.L., Hu G.Q.. Synthesis and antibacterial activity of novel[12, 4]triazolo[3, 4-h] [1, 8]naphthyridine-7-carboxylic acid derivatives[J]. Chin. Chem. Lett., 2014,26:149-151.

    14. [14]

      Li B., Harjani J.R., Cormier N.S.. Besting vitamin E:Sidechain substitution is key to the reactivity of naphthyridinol antioxidants in lipid bilayers[J]. J. Am. Chem. Soc., 2013,135:1394-1405. doi: 10.1021/ja309153x

    15. [15]

      Kuroda T., Suzuki F., Tamura T., Ohmori K., Hosoe H.. A novel synthesis and potent antiinflammatory activity of 4-hydroxy-2(1H)-oxo-1-phenyl-18-naphthyridine-3-carboxamides[J]. J. Med. Chem., 1992,35:1130-1136. doi: 10.1021/jm00084a019

    16. [16]

      S. Bekkering, B.A. Blok, L.A. Joosten, et al., In vitro experimental model of trained innate immunity in human primary monocytes, Clin. Vaccine Immunol. 12(23(12)) (2016) 349-16.

    17. [17]

      Manera C., Malfitano A.M., Parkkari T., Lucchesi V., Carpi S.. New quinolone-and 1, 8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno modulatory activity[J]. Eur. J. Med. Chem., 2015,97:10-18. doi: 10.1016/j.ejmech.2015.04.034

    18. [18]

      Nam T.G., Rector C.L., Kim H.Y.. Tetrahydro-18-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins[J]. J. Am. Chem. Soc., 2007,129:10211-10219. doi: 10.1021/ja072371m

    19. [19]

      Barreiro E.J., Camara C.A., Verli H.. Design, synthesis, and pharmacological profile of novel fused pyrazolo[4, 3-d]pyridine and pyrazolo[3, 4-b] [1, 8]naphthyridine isosteres:a new class of potent and selective acetylcholinesterase inhibitors[J]. J. Med. Chem., 2003,46:1144-1152. doi: 10.1021/jm020391n

    20. [20]

      De L.R.C., Egea J., Marco-Contelles J.. Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1, 8-naphthyridine derivatives[J]. J. Med. Chem., 2010,53:5129-5143. doi: 10.1021/jm901902w

    21. [21]

      You Q., Li Z., Huang C.. Discovery of a novel series of quinolone and naphthyridine derivatives as potential topoisomerase i inhibitors by scaffold modification[J]. J. Med. Chem., 2009,52:5649-5661. doi: 10.1021/jm900469e

    22. [22]

      Dhar A.K., Mahesh R., Jindal A., Devadoss T., Bhatt S.. Design, synthesis, and pharmacological evaluation of novel 2-(4-substituted piperazin-1-yl)1, 8 naphthyridine 3-carboxylic acids as 5-ht 3 receptor antagonists for the management of depression[J]. Chem. Biol. Drug Des., 2014,84:721-731. doi: 10.1111/cbdd.12370

    23. [23]

      Laura Betti P.L.F., Tiziana C., Gino G.. study on affinity profile toward native human and bovine adenosine receptors of a series of 18-naphthyridine derivatives[J]. J. Med. Chem., 2004,47:3019-3031. doi: 10.1021/jm030977p

    24. [24]

      Hartner F.W., Hsiao Y., Eng K.K.. Methods for the synthesis of 5, 6, 7, 8-tetrahydro-1, 8-naphthyridine fragments for avb3 integrin antagonists[J]. J. Org. Chem., 2004,69:8723-8730. doi: 10.1021/jo0486950

    25. [25]

      Ferrarini P.L., Mori C., Manera C.. A novel class of highly potent and selective A1 adenosine antagonists:structure-affinity profile of a series of 18-naphthyridine derivatives[J]. J. Med. Chem., 2000,43:2814-2823. doi: 10.1021/jm990321p

    26. [26]

      Mohan M., Gujar G.T.. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes[J]. Crop Prot., 2003,22:495-504. doi: 10.1016/S0261-2194(02)00201-6

    27. [27]

      Tang H., Ji P.. Using the statistical program r instead of spss to analyze data[J]. ACS Symp. Ser., 2015,1166:135-151.  

    28. [28]

      Chae S.H., Kim S.I., Yeon S.H., Lee S.W., Ahn Y.J.. Adulticidal activity of phthalides identified in cnidium officinale rhizome to b-and q-biotypes of bemisia tabaci[J]. J. Agric. Food. Chem., 2011,59:8193-8198. doi: 10.1021/jf201927t

  • 加载中
    1. [1]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    2. [2]

      . . University Chemistry, 2024, 39(8): 0-0.

    3. [3]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    4. [4]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    5. [5]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    6. [6]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    7. [7]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    8. [8]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    9. [9]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    10. [10]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    11. [11]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    12. [12]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    13. [13]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    16. [16]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    17. [17]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    18. [18]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    19. [19]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    20. [20]

      . 第41卷第1期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(1): -.

Metrics
  • PDF Downloads(3)
  • Abstract views(695)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return