Synthesis and insecticidal activities of 1, 8-naphthyridine derivatives
- Corresponding author: Shao Xu-Sheng, shaoxusheng@ecust.edu.cn
Citation:
Hou Qing-Qing, Jing Yi-Fei, Shao Xu-Sheng. Synthesis and insecticidal activities of 1, 8-naphthyridine derivatives[J]. Chinese Chemical Letters,
;2017, 28(8): 1723-1726.
doi:
10.1016/j.cclet.2017.05.016
Wang K., Qian X., Cui J.. ChemInform abstract:design, synthesis, and bioactivity of cyanonitrovinyl neonicotinoids as potential insecticides[J]. Cheminform, 2011,42:1117-1122.
Furlan L., Kreutzweiser D.. Alternatives to neonicotinoid insecticides for pest control:case studies in agriculture and forestry[J]. Environ. Sci. Pollut. Res., 2015,22:135-147. doi: 10.1007/s11356-014-3628-7
Nauen R., Denholm I.. Resistance of insect pests to neonicotinoid insecticides:Current status and future prospects[J]. Arch. Insect Biochem. Physiol., 2005,58:200-215. doi: 10.1002/(ISSN)1520-6327
Liu X., Wu X., Long Z.. Photodegradation of imidacloprid in aqueous solution by metal-free catalyst graphitic carbon nitride using an energy-saving lamp[J]. J. Agri. Food. Chem., 2015,19:4754-4760.
Li Z., Shao X., Sun F., Zhu F.. One-Pot, Three-component synthesis of 1, 8-naphthyridine derivatives from heterocyclic ketene aminals, malononitrile dimer, and aryl aldehydes[J]. Synlett, 2015,26:2306-2312. doi: 10.1055/s-00000083
Fu L., Feng X., Wang J.J.. Efficient synthesis and evaluation of antitumor activities of novel functionalized 18-naphthyridine derivatives[J]. Acs. Comb. Sci., 2015,17:24-31. doi: 10.1021/co500120b
Jeanneau E., Nicolle -, Benoit M., Guyod -, Namil A., Leclerc G.. New thiazolo[32-a] pyrimidine derivatives, synthesis and structure-activity relationships[J]. Eur. J. Med. Chem., 1992,27:115-120. doi: 10.1016/0223-5234(92)90099-M
Tsuzuki Y., Tomita K., Shibamori K.. Synthesis and structure-activity relationships of novel 7-substituted 14-dihydro-4-oxo-1-(2-thiazolyl)-1. 8-naphthyridine-3-carboxylic acids as antitumor agents. Part 2[J]. J. Med. Chem., 2002,45:5564-5575. doi: 10.1021/jm010057b
Yang L., Wang S., Sun D.. Development of a biomimetic chondroitin sulfate-modified hydrogel to enhance the metastasis of tumor cells[J]. Sci. Rep., 2016,6:1-13. doi: 10.1038/s41598-016-0001-8
Santilli A.A., Scotese A.C., Yurchenco J.A.. ChemInform Abstract:synthesis and antibacteial evaluation of 1, 2, 3, -tetrahydro-4-oxo-1, 8-naphthridine-3-carboxylic acid esters, carbonitriles, and carboxamides[J]. J. Med. Chem., 1976,7:1038-1041.
Nishigaki S., Mizushima N., Yoneda F.. Synthetic antibacterials. 3. Nitrofurylvinyl-18-naphthyridine derivatives[J]. J. Med. Chem., 1971,14:638-640.
Singh S.B., Kaelin D.E., Meinke P.T.. Structure activity relationship of C-2 ether substituted 15-naphthyridine analogs of oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-5)[J]. Bioorg. Med. Chem. Lett., 2015,17:3630-3635.
Gao L.Z., Xie Y.S., Li T., Huang W.L., Hu G.Q.. Synthesis and antibacterial activity of novel[12, 4]triazolo[3, 4-h] [1, 8]naphthyridine-7-carboxylic acid derivatives[J]. Chin. Chem. Lett., 2014,26:149-151.
Li B., Harjani J.R., Cormier N.S.. Besting vitamin E:Sidechain substitution is key to the reactivity of naphthyridinol antioxidants in lipid bilayers[J]. J. Am. Chem. Soc., 2013,135:1394-1405. doi: 10.1021/ja309153x
Kuroda T., Suzuki F., Tamura T., Ohmori K., Hosoe H.. A novel synthesis and potent antiinflammatory activity of 4-hydroxy-2(1H)-oxo-1-phenyl-18-naphthyridine-3-carboxamides[J]. J. Med. Chem., 1992,35:1130-1136. doi: 10.1021/jm00084a019
S. Bekkering, B.A. Blok, L.A. Joosten, et al., In vitro experimental model of trained innate immunity in human primary monocytes, Clin. Vaccine Immunol. 12(23(12)) (2016) 349-16.
Manera C., Malfitano A.M., Parkkari T., Lucchesi V., Carpi S.. New quinolone-and 1, 8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno modulatory activity[J]. Eur. J. Med. Chem., 2015,97:10-18. doi: 10.1016/j.ejmech.2015.04.034
Nam T.G., Rector C.L., Kim H.Y.. Tetrahydro-18-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins[J]. J. Am. Chem. Soc., 2007,129:10211-10219. doi: 10.1021/ja072371m
Barreiro E.J., Camara C.A., Verli H.. Design, synthesis, and pharmacological profile of novel fused pyrazolo[4, 3-d]pyridine and pyrazolo[3, 4-b] [1, 8]naphthyridine isosteres:a new class of potent and selective acetylcholinesterase inhibitors[J]. J. Med. Chem., 2003,46:1144-1152. doi: 10.1021/jm020391n
De L.R.C., Egea J., Marco-Contelles J.. Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1, 8-naphthyridine derivatives[J]. J. Med. Chem., 2010,53:5129-5143. doi: 10.1021/jm901902w
You Q., Li Z., Huang C.. Discovery of a novel series of quinolone and naphthyridine derivatives as potential topoisomerase i inhibitors by scaffold modification[J]. J. Med. Chem., 2009,52:5649-5661. doi: 10.1021/jm900469e
Dhar A.K., Mahesh R., Jindal A., Devadoss T., Bhatt S.. Design, synthesis, and pharmacological evaluation of novel 2-(4-substituted piperazin-1-yl)1, 8 naphthyridine 3-carboxylic acids as 5-ht 3 receptor antagonists for the management of depression[J]. Chem. Biol. Drug Des., 2014,84:721-731. doi: 10.1111/cbdd.12370
Laura Betti P.L.F., Tiziana C., Gino G.. study on affinity profile toward native human and bovine adenosine receptors of a series of 18-naphthyridine derivatives[J]. J. Med. Chem., 2004,47:3019-3031. doi: 10.1021/jm030977p
Hartner F.W., Hsiao Y., Eng K.K.. Methods for the synthesis of 5, 6, 7, 8-tetrahydro-1, 8-naphthyridine fragments for avb3 integrin antagonists[J]. J. Org. Chem., 2004,69:8723-8730. doi: 10.1021/jo0486950
Ferrarini P.L., Mori C., Manera C.. A novel class of highly potent and selective A1 adenosine antagonists:structure-affinity profile of a series of 18-naphthyridine derivatives[J]. J. Med. Chem., 2000,43:2814-2823. doi: 10.1021/jm990321p
Mohan M., Gujar G.T.. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes[J]. Crop Prot., 2003,22:495-504. doi: 10.1016/S0261-2194(02)00201-6
Tang H., Ji P.. Using the statistical program r instead of spss to analyze data[J]. ACS Symp. Ser., 2015,1166:135-151.
Chae S.H., Kim S.I., Yeon S.H., Lee S.W., Ahn Y.J.. Adulticidal activity of phthalides identified in cnidium officinale rhizome to b-and q-biotypes of bemisia tabaci[J]. J. Agric. Food. Chem., 2011,59:8193-8198. doi: 10.1021/jf201927t
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430
. . University Chemistry, 2024, 39(8): 0-0.
Xin Zhang , Junyu Chen , Xiang Pei , Linxin Yang , Liang Wang , Luona Chen , Guangmei Yang , Xibo Pei , Qianbing Wan , Jian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889
Si-Hua Liu , Jun-Hao Zhou , Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Yang Li , Yihan Chen , Jiaxin Luo , Qihuan Li , Yiwu Quan , Yixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
Jing LIANG , Qian WANG , Junfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
. 第41卷第1期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(1): -.