Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology
- Corresponding author: Fang Xiang, fangxiang@nim.ac.cn Xu Wei, weixu@bit.edu.cn; rayxuxu@gmail.com 1 These authors contributed equally to this work
Citation:
Jiang You, He Mu-Yi, Zhang Wen-Jing, Luo Pan, Guo Dan, Fang Xiang, Xu Wei. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology[J]. Chinese Chemical Letters,
;2017, 28(8): 1640-1652.
doi:
10.1016/j.cclet.2017.05.008
Kleparnik K.. Recent advances in combination of capillary electrophoresis with mass spectrometry:methodology and theory[J]. Electrophoresis, 2015,36:159-178. doi: 10.1002/elps.v36.1
Kleparnik K.. Recent advances in the combination of capillary electrophoresis with mass spectrometry:from element to single-cell analysis[J]. Electrophoresis, 2013,34:70-85. doi: 10.1002/elps.v34.1
Ibanez C., Simo C., Garcia-Canas V., Cifuentes A., Castro-Puyana M.. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics:a review[J]. Anal. Chim. Acta, 2013,802:1-13. doi: 10.1016/j.aca.2013.07.042
Lindenburg P.W., Haselberg R., Rozing G., Ramautar R.. Developments in interfacing designs for CE-MS:towards enabling tools for proteomics and metabolomics[J]. Chromatographia, 2015,78:367-377. doi: 10.1007/s10337-014-2795-5
Rodriguez Robledo V., Smyth W.F.. Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and targetbased applications[J]. Electrophoresis, 2014,35:2292-2308. doi: 10.1002/elps.v35.16
Stalmach A., Albalat A., Mullen W., Mischak H.. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications[J]. Electrophoresis, 2013,34:1452-1464. doi: 10.1002/elps.v34.11
Hirayama A., Wakayama M., Soga T.. Metabolome analysis based on capillary electrophoresis-mass spectrometry[J]. Trac-Trends in Anal. Chem., 2014,61:215-222. doi: 10.1016/j.trac.2014.05.005
Ramautar R., Somsen G.W., de Jong G.J.. CE-MS for metabolomics:developments and applications in the period 2010-2012[J]. Electrophoresis, 2013,34:86-98. doi: 10.1002/elps.v34.1
Ramautar R., Somsen G.W., de Jong G.J.. CE-MS for metabolomics:developments and applications in the period 2012-2014[J]. Electrophoresis, 2015,36:212-224. doi: 10.1002/elps.v36.1
Wang X., Li K., Adams E., Van Schepdael A.. Capillary electrophoresis-mass spectrometry in metabolomics:the potential for driving drug discovery and development[J]. Curr. Drug. Metab., 2013,14:807-813. doi: 10.2174/13892002113149990101
Albalat A., Husi H., Siwy J.. Capillary electrophoresis interfaced with a mass spectrometer (CE-MS):technical considerations and applicability for biomarker studies in animals[J]. Curr. Protein Pept. Sci., 2014,15:23-35. doi: 10.2174/1389203715666140221123920
Pontillo C., Filip S., Borras D.M.. CE-MS-based proteomics in biomarker discovery and clinical application[J]. Proteomics Clin. Appl., 2015,9:322-334. doi: 10.1002/prca.201400115
Albalat A., Husi H., Stalmach A., Schanstra J.P., Mischak H.. Classical MALDIMS versus CE-based ESI-MS proteomic profiling in urine for clinical applications[J]. Bioanalysis, 2014,6:247-266. doi: 10.4155/bio.13.313
Latosinska A., Frantzi M., Vlahou A., Mischak H.. Clinical applications of capillary electrophoresis coupled to mass spectrometry in biomarker discovery:focus on bladder cancer[J]. Proteomics Clin. Appl., 2013,7:779-793. doi: 10.1002/prca.v7.11-12
Mischak H., Vlahou A., Ioannidis J.P.A.. Technical aspects and inter-laboratory variability in native peptide profiling:the CE-MS experience[J]. Clin. Biochem., 2013,46:432-443. doi: 10.1016/j.clinbiochem.2012.09.025
Wang C.-W., Her G.-R.. The development of a counterflow-assisted preconcentration technique in capillary electrophoresis electrospray-ionization mass spectrometry[J]. Electrophoresis, 2014,35:1251-1258. doi: 10.1002/elps.v35.9
Ulivo L. D', Feng Y.-L.. Expanding the scope of pressure-assisted electrokinetic injection for online concentration of positively charged analytes in capillary electrophoresis-mass spectrometry[J]. Electrophoresis, 2015,36:1024-1027. doi: 10.1002/elps.v36.7-8
Park S.-G., Murray K.K.. Ambient laser ablation sampling for capillary electrophoresis mass spectrometry[J]. Rapid Commun. Mass Spectrom., 2013,27:1673-1680. doi: 10.1002/rcm.6618
Wang N.H., Her G.R.. The development of a hydrodynamic flow assisted double junction interface for signal improvement in capillary electrophoresis-mass spectrometry using positively charged nonvolatile additives[J]. J. Chromatog. A, 2015,1379:106-111. doi: 10.1016/j.chroma.2014.12.046
Kelly R.T., Wang C., Rausch S.J., Lee C.S., Tang K.. Pneumatic microvalve-based hydrodynamic sample injection for high-throughput, quantitative zone electrophoresis in capillaries[J]. Anal. Chem., 2014,86:6723-6729. doi: 10.1021/ac501910p
Kuehnbaum N.L., Gillen J.B., Kormendi A.. Multiplexed separations for biomarker discovery in metabolomics:elucidating adaptive responses to exercise training[J]. Electrophoresis, 2015,36:2226-2236. doi: 10.1002/elps.v36.18
Kuehnbaum N.L., Kormendi A., Britz-McKibbin P.. Multisegment injectioncapillary electrophoresis-mass spectrometry:a high-throughput platform for metabolomics with high data fidelity[J]. Anal. Chem., 2013,85:10664-10669. doi: 10.1021/ac403171u
Grundmann M., Matysik F.-M.. Analyzing small samples with high efficiency:capillary batch injection-capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal. Chem., 2012,404:1713-1721. doi: 10.1007/s00216-012-6282-2
Mark J.J.P., Beutner A., Cindric M., Matysik F.-M.. Microanalytical study of subnanoliter samples by capillary electrophoresis-mass spectrometry with 100% injection efficiency[J]. Microchim. Acta, 2015,182:351-359. doi: 10.1007/s00604-014-1339-x
Martinez-Villalba A., Nunez O., Moyano E., Teresa Galceran M.. Field amplified sample injection-capillary zone electrophoresis for the analysis of amprolium in eggs[J]. Electrophoresis, 2013,34:870-876. doi: 10.1002/elps.201200579
Cheng H., Han C., Xu Z., Liu J., Wang Y.. Sensitivity enhancement by fieldamplified sample injection in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry for bromine speciation in bread[J]. Food Anal. Method., 2014,7:2153-2162. doi: 10.1007/s12161-014-9848-0
He Y., Li X., Tong P.. An online field-amplification sample stacking method for the determination of beta(2)-agonists in human urine by CE-ESI/MS[J]. Talanta, 2013,104:97-102. doi: 10.1016/j.talanta.2012.11.041
Hung S.-H., Her G.-R.. A convenient and sensitive method for haloacetic acid analysis in tap water by on-line field-amplified sample-stacking CE-ESI-MS[J]. J. Sep. Sci., 2013,36:3635-3643. doi: 10.1002/jssc.v36.21-22
Ito E., Nakajima K., Waki H.. Structural characterization of pyridylaminated oligosaccharides derived from neutral glycosphingolipids by high-sensitivity capillary electrophoresis-mass spectrometry[J]. Anal. Chem., 2013,85:7859-7865. doi: 10.1021/ac401460f
Wuethrich A., Haddad P.R., Quirino J.P.. Field-enhanced sample injection micelle-to-solvent stacking capillary zone electrophoresis-electrospray ionization mass spectrometry of antibiotics in seawater after solid-phase extraction[J]. Electrophoresis, 2016,37:1139-1142. doi: 10.1002/elps.v37.9
Palatzky P., Zoepfl A., Hirsch T., Matysik F.-M.. Electrochemically assisted injection in combination with capillary electrophoresis-mass spectrometry (EAI-CE-MS)-mechanistic and quantitative studies of the reduction of 4-nitrotoluene at various carbon-based screen-printed electrodes[J]. Electroanalysis, 2013,25:117-122. doi: 10.1002/elan.201200393
Scholz R., Palatzky P., Matysik F.-M.. Simulation of oxidative stress of guanosine and 8-oxo-7, 8-dihydroguanosine by electrochemically assisted injection-capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal. Chem., 2014,406:687-694. doi: 10.1007/s00216-013-7500-2
Jarvas G., Guttman A., Foret F.. Numerical modeling of capillary electrophoresis-electrospray mass spectrometry interface design[J]. Mass Spectrom. Rev., 2015,34:558-569. doi: 10.1002/mas.v34.5
Bonvin G., Schappler J., Rudaz S.. Capillary electrophoresis-electrospray ionization-mass spectrometry interfaces:fundamental concepts and technical developments[J]. J. Chromatogr. A, 2012,1267:17-31. doi: 10.1016/j.chroma.2012.07.019
Krenkova J., Kleparnik K., Grym J., Luksch J., Foret F.. Self-aligning subatmospheric hybrid liquid junction electrospray interface for capillary electrophoresis[J]. Electrophoresis, 2016,37:414-417. doi: 10.1002/elps.v37.3
Lindenburg P.W., Ramautar R., Jayo R.G., Chen D.D.Y., Hankemeier T.. Capillary electrophoresis-mass spectrometry using a flow-through microvial interface for cationic metabolome analysis[J]. Electrophoresis, 2014,35:1308-1314. doi: 10.1002/elps.v35.9
Lin L., Liu X.Y., Zhang F.M.. Analysis of heparin oligosaccharides by capillary electrophoresis-negative-ion electrospray ionization mass spectrometry[J]. Anal. Bioanal. Chem., 2017,409:411-420. doi: 10.1007/s00216-016-9662-1
Sun X.J., Lin L., Liu X.Y.. Capillary electrophoresis-mass spectrometry for the analysis of heparin oligosaccharides and low molecular weight heparin[J]. Anal. Chem., 2016,88:1937-1943. doi: 10.1021/acs.analchem.5b04405
Choi S.B., Zamarbide M., Manzini M.C., Nemes P.. Tapered-tip capillary electrophoresis nano-electrospray ionization mass spectrometry for ultrasensitive proteomics:the mouse cortex[J]. J. Am. Soc. Mass Spectrom., 2017,28:597-607. doi: 10.1007/s13361-016-1532-8
Jeong J.-S., Kim S.-K., Park S.-R.. Amino acid analysis of dried blood spots for diagnosis of phenylketonuria using capillary electrophoresis-mass spectrometry equipped with a sheathless electrospray ionization interface[J]. Anal. Bioanal. Chem., 2013,405:8063-8072. doi: 10.1007/s00216-013-6999-6
Huang J.-L., Hsu R.-Y., Her G.-R.. The development of a sheathless capillary electrophoresis electrospray ionization-mass spectrometry interface based on thin conducting liquid film[J]. J.Chromatogr. A, 2012,1267:131-137. doi: 10.1016/j.chroma.2012.08.081
Wang C.-W., Her G.-R.. Sheathless capillary electrophoresis electrospray ionization-mass spectrometry interface based on poly(dimethylsiloxane) membrane emitterand thin conducting liquid film[J]. Electrophoresis, 2013,34:2538-2545. doi: 10.1002/elps.201300069
Tycova A., Foret F.. Capillary electrophoresis in an extended nanospray tipelectrosprayas an electrophoretic column[J]. J. Chromatogr. A, 2015,1388:274-279. doi: 10.1016/j.chroma.2015.02.042
Tycova A., Vido M., Kovarikova P., Foret F.. Interface-free capillary electrophoresis-mass spectrometry system with nanospray ionization Analysis of dexrazoxane in blood plasma[J]. J. Chromatogr. A, 2016,1466:173-179. doi: 10.1016/j.chroma.2016.08.042
Kammeijer G.S.M., Kohler I., Jansen B.C.. Dopant enriched nitrogen gas combined with sheathless capillary electrophoresis-electrospray ionizationmass spectrometryfor improved sensitivity and repeatability in glycopeptide analysis[J]. Anal. Chem., 2016,88:5849-5856. doi: 10.1021/acs.analchem.6b00479
Zhong X., Zhang Z., Jiang S., Li L.. Recent advances in coupling capillary electrophoresis-based separation techniques to ESI and MALDI-MS[J]. Electrophoresis, 2014,35:1214-1225. doi: 10.1002/elps.v35.9
Biacchi M., Bhajun R., Said N.. Analysis of monoclonal antibody by a novel CE-UV/MALDI-MS interface[J]. Electrophoresis, 2014,35:2986-2995. doi: 10.1002/elps.201400276
Tomalova I., Foltynova P., Kanicky V., Preisler J.. MALDI MS and ICP MS detection of a single CE separation record:a tool for metalloproteomics[J]. Anal. Chem., 2014,86:647-654. doi: 10.1021/ac402941e
Springer V., Jacksen J., Ek P., Lista A.G., Emmer A.. Capillary electrophoretic determination of fluoroquinolones in bovine milk followed by off-line malditof-ms analysis[J]. Chromatographia, 2015,78:285-290. doi: 10.1007/s10337-014-2823-5
Chen H.-X., Busnel J.-M., Qiao L.. Compatible buffer for capillary electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal Method, 2013,5:4258-4262. doi: 10.1039/c3ay40397a
Timerbaev A.R., Pawlak K., Aleksenko S.S.. Advances of CE-ICP-MS in speciation analysis related to metalloproteomics of anticancer drugs[J]. Talanta, 2012,102:164-170. doi: 10.1016/j.talanta.2012.07.031
Liu L., He B., Yun Z., Sun J., Jiang G.. Speciation analysis of arsenic compounds by capillary electrophoresis on-line coupled with inductivelycoupled plasma mass spectrometry using a novel interface[J]. J. Chromatogr. A, 2013,1304:227-233. doi: 10.1016/j.chroma.2013.07.034
Liu L., Yun Z., He B., Jiang G.. Efficient interface for online coupling of capillary electrophoresis with inductively coupled plasma-mass spectrometry and its application in simultaneous speciation analysis of arsenic and selenium[J]. Anal. Chem., 2014,86:8167-8175. doi: 10.1021/ac501347d
Liu L., He B., Liu Q.. Identification and accurate size characterization of nanoparticles in complex media[J]. Angew. Chem. In. Edit., 2014,53:14476-14479. doi: 10.1002/anie.201408927
Kovachev N., Angel Aguirre M., Hidalgo M.. Elemental speciation by capillary electrophoresis with inductively coupled plasma spectrometry:a new approach by Flow Focusing (R) nebulization[J]. Microchem. J., 2014,117:27-33. doi: 10.1016/j.microc.2014.06.005
Nakamoto D., Tanaka M.. Speciation of aluminum by CE-ESI-MS and CE-ICPMS[J]. Bunseki Kagaku, 2014,63:383-390. doi: 10.2116/bunsekikagaku.63.383
Qu H., Mudalige T.K., Linder S.W.. Capillary electrophoresis/inductivelycoupled plasma-mass spectrometry:development and optimization of a high resolution analytical tool for the size-based characterization of nanomaterials in dietary supplements[J]. Anal. Chem., 2014,86:11620-11627. doi: 10.1021/ac5025655
Qu H., Mudalige T.K., Linder S.W.. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry:enzymeassisted water-phase microwave digestion[J]. J. Agric. Food Chem., 2015,63:3153-3160. doi: 10.1021/acs.jafc.5b00446
Chen Y., Chen J., Xi Z.. Simultaneous analysis of Cr(Ⅲ), Cr(Ⅳ), and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Electrophoresis, 2015,36:1208-1215. doi: 10.1002/elps.v36.9-10
Chen Y., Huang L., Wu W.. Speciation analysis of lead in marine animals by using capillary electrophoresis couple online with inductively coupled plasma mass spectrometry[J]. Electrophoresis, 2014,35:1346-1352. doi: 10.1002/elps.v35.9
Yang M., Wu W., Ruan Y.. Ultra-sensitive quantification of lysozyme based on element chelate labeling and capillary electrophoresis inductively coupled plasma mass spectrometry[J]. Anal. Chim. Acta, 2014,812:12-17. doi: 10.1016/j.aca.2014.01.003
Brunel B., Philippini V., Mendes M., Aupiais J.. Actinide oxalate complexes formation as a function of temperature by capillary electrophoresis coupled with inductively coupled plasma mass spectrometry[J]. Radiochim. Acta, 2015,103:27-37.
Kautenburger R., Hein C., Sander J.M., Beck H.P.. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS[J]. Anal. Chim. Acta, 2014,816:50-59. doi: 10.1016/j.aca.2014.01.044
Stern J.C., Foustoukos D.I., Sonke J.E., Salters V.J.M.. Humic acid complexation of Th, Hf and Zr in ligand competition experiments:metal loading and pH effects[J]. Chem. Geo., 2014,363:241-249. doi: 10.1016/j.chemgeo.2013.11.001
Aleksenko S.S., Matczuk M., Lu X.. Metallomics for drug development:an integrated CE-ICP-MS and ICP-MS approach reveals the speciation changes for an investigational ruthenium(Ⅲ) drug bound to holo-transferrin in simulated cancer cytosol[J]. Metallomics, 2013,5:955-963. doi: 10.1039/c3mt00092c
Matczuk M., Przadka M., Aleksenko S.S.. Metallomics for drug development:a further insight into intracellular activation chemistry of a ruthenium(iii)-based anticancer drug gained using a multidimensional analytical approach[J]. Metallomics, 2014,6:147-153. doi: 10.1039/C3MT00252G
Nguyen T.T.T.N., Ostergaard J., Sturup S., Gammelgaard B.. Determination of platinum drug releaseand liposome stability inhumanplasma by CE-ICP-MS[J]. Int. J. Pharm., 2013,449:95-102. doi: 10.1016/j.ijpharm.2013.03.055
Nguyen T.T.T.N., Ostergaard J., Sturup S., Gammelgaard B.. Metallomics in drug development:characterization of a liposomal cisplatin drug formulation in human plasma by CE-ICP-MS[J]. Anal. Bioanal. Chem., 2013,405:1845-1854. doi: 10.1007/s00216-012-6355-2
Chen F., Zheng L., Han L.. Analysis of arsenic species in dry seafood products by capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Sci. Tech. Food Indus., 2014,35:304-307.
Vacchina V., Ionescu C., Oguey S., Lobinski R.. Determination of Zn-, Cu-and Mn-glycinate complexes in feed samples and in-vitro and in-vivo assays to assess their bioaccessibility in feed samples[J]. Talanta, 2013,113:14-18. doi: 10.1016/j.talanta.2013.03.083
Cheng Y.-J., Huang S.-H., Chiu J.-Y., Liu W.-L., Huang H.-Y.. Analyses of polycyclic aromatic hydrocarbons in seafood by capillary electrochromatography-atmospheric pressure chemical ionization/mass spectrometry[J]. J. Chromatogr. A, 2013,1313:132-138. doi: 10.1016/j.chroma.2013.08.035
Chang C., Xu G., Bai Y.. Online coupling of capillary electrophoresis with direct analysis in real time mass spectrometry[J]. Anal. Chem., 2013,85:170-176. doi: 10.1021/ac303450v
Zhang Y.D., Ai W.P., Bai Y.. An interface for online coupling capillary electrophoresis to dielectric barrier discharge ionization mass spectrometry[J]. Anal. Bioanal. Chem., 2016,408:8655-8661. doi: 10.1007/s00216-016-9822-3
Pejchinovski M., Hrnjez D., Ramirez-Torres A.. Capillary zone electrophoresis on-line coupled to mass spectrometry:a perspective application for clinical proteomics[J]. Proteom. Clin. Appl., 2015,9:453-468. doi: 10.1002/prca.v9.5-6
Sun L., Knierman M.D., Zhu G., Dovichi N.J.. Fast top-down intact protein characterization with capillary zone electrophoresis-electrospray ionization tandem mass spectrometry[J]. Anal. Chem., 2013,85:5989-5995. doi: 10.1021/ac4008122
Sun L., Zhu G., Dovichi N.J.. Integrated capillary zone electrophoresis-electrospray ionization tandem mass spectrometry system with an immobilized trypsin microreactor for online digestion and analysis of picogram amounts of RAW 264.7 cell lysate[J]. Anal. Chem, 2013,85:4187-4194. doi: 10.1021/ac400523x
Zhao Y., Sun L., Champion M.M., Knierman M.D., Dovichi N.J.. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for topdown characterization of the mycobacterium marinum secretome[J]. Anal. Chem., 2014,86:4873-4878. doi: 10.1021/ac500092q
Sun L., Hebert A.S., Yan X.. Over 10000 peptide identifications from the hela proteome by using single-shot capillary zone electrophoresis combined with tandem mass spectrometry[J]. Angew. Chem. Int. Edit., 2014,53:13931-13933. doi: 10.1002/anie.201409075
Sun L., Zhu G., Mou S.. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for quantitative parallel reaction monitoring of peptide abundance and single-shot proteomic analysis of a human cell line[J]. J. Chromatogr. A, 2014,1359:303-308. doi: 10.1016/j.chroma.2014.07.024
Sun L., Zhu G., Yan X., Champion M.M., Dovichi N.J.. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface[J]. Proteomics, 2014,14:622-628. doi: 10.1002/pmic.v14.4-5
Sun L., Zhu G., Yan X., Dovichi N.J.. High sensitivity capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for the rapid analysis of complex proteomes[J]. Curr. Opin. Chem. Bio., 2013,17:795-800. doi: 10.1016/j.cbpa.2013.07.018
Sun L., Zhu G., Zhang Z., Mou S., Dovichi N.J.. Third-Generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests[J]. J. Proteom. Res., 2015,14:2312-2321. doi: 10.1021/acs.jproteome.5b00100
Zhang Z., Sun L., Zhu G., Yan X., Dovichi N.J.. Integrated strong cationexchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry[J]. Talanta, 2015,138:117-122. doi: 10.1016/j.talanta.2015.01.040
Zhu G., Sun L., Yan X., Dovichi N.J.. Single-shot proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with production of more than 1250 escherichia coli peptide identifications in a 50min separation[J]. Anal. Chem., 2013,85:2569-2573. doi: 10.1021/ac303750g
Zhu G., Sun L., Yan X., Dovichi N.J.. Stable reproducible, and automated capillary zone electrophoresis-tandem mass spectrometry system with an electrokinetically pumped sheath-flow nanospray interface[J]. Anal. Chim. Acta, 2014,810:94-98. doi: 10.1016/j.aca.2013.11.057
Ludwig K.R., Sun L.L., Zhu G.J., Dovichi N.J., Hummon A.B.. Over 2300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100min separation[J]. Anal. Chem., 2015,87:9532-9537. doi: 10.1021/acs.analchem.5b02457
Peuchen E.H., Zhu G.J., Sun L.L., Dovichi N.J.. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system[J]. Anal. Bioanal. Chem., 2017,409:1789-1795. doi: 10.1007/s00216-016-0122-8
Sarver S.A., Schiavone N.M., Arceo J.. Capillary electrophoresis coupled to negative mode electrospray ionization mass spectrometry using an electrokinetically-pumped nanospray interface with primary amines grafted to the interior of a glass emitter[J]. Talanta, 2017,165:522-525. doi: 10.1016/j.talanta.2017.01.002
Moini M., Martinez B.. Ultrafast capillary electrophoresis/mass spectrometry with adjustable porous tip for a rapid analysis of protein digest in about a minute[J]. Rapid Commun. Mass Spectrom., 2014,28:305-310. doi: 10.1002/rcm.6786
Moini M., Rollman C.M.. Compatibility of highly sulfated cyclodextrin with electrospray ionization at low nanoliter/minute flow rates and its application to capillary electrophoresis/electrospray ionization mass spectrometric analysis of cathinone derivatives and their optical isomers[J]. Rapid Commun. Mass Spectrom., 2015,29:304-310. doi: 10.1002/rcm.7106
He M., Xue Z., Zhang Y.. Development and characterizations of a miniature capillary electrophoresis mass spectrometry system[J]. Anal. Chem., 2015,87:2236-2241. doi: 10.1021/ac504868w
Moini M., Rollman C.M.. Portable, battery operated capillary electrophoresis with optical isomer resolution integrated with ionization source for mass spectrometry[J]. J. Am. Soc. Mass Spectrom., 2016,27:388-393. doi: 10.1007/s13361-015-1314-8
Bergstrom T., Fredriksson S.-A., Nilsson C., Astot C.. Deamidation in ricin studied by capillary zone electrophoresis-and liquid chromatography-mass spectrometry[J]. J. Chromatogr. B-Anal. Tech. Biomed. Life Sci., 2015,974:109-117. doi: 10.1016/j.jchromb.2014.10.015
Kohl F.J., Montealegre C., Neususs C.. On-line two-dimensional capillary electrophoresis with mass spectrometric detection using a fully electric isolated mechanical valve[J]. Electrophoresis, 2016,37:954-958. doi: 10.1002/elps.201500579
Nordman N., Barrios-Lopez B., Lauren S.. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry[J]. Electrophoresis, 2015,36:428-432. doi: 10.1002/elps.201400278
Ollikainen E., Bonabi A., Nordman N.. Rapid separation of phosphopeptides by microchip electrophoresis-electrospray ionization mass spectrometry[J]. J. Chromatogr. A, 2016,1440:249-254. doi: 10.1016/j.chroma.2016.02.063
Tahka S.M., Bonabi A., Jokinen V.P., Sikanen T.M.. Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices[J]. J. Chromatogr. A, 2017,1496:150-156. doi: 10.1016/j.chroma.2017.03.018
Mellors J.S., Black W.A., Chambers A.G.. Hybrid capillary/microfluidic system for comprehensive online liquid chromatography-capillary electrophoresis-electrospray ionization-mass spectrometry[J]. Anal. Chem., 2013,85:4100-4106. doi: 10.1021/ac400205a
Black W.A., Stocks B.B., Mellors J.S., Engen J.R., Ramsey J.M.. Utilizing microchip capillary electrophoresis electrospray ionization for hydrogen exchange mass spectrometry[J]. Anal. Chem., 2015,87:6280-6287. doi: 10.1021/acs.analchem.5b01179
Redman E.A., Batz N.G., Mellors J.S., Ramsey J.M.. Integrated microfluidic capillary electrophoresis-electrospray ionization devices with online ms detection for the separation and characterization of intact monoclonal antibody variants[J]. Anal. Chem., 2015,87:2264-2272. doi: 10.1021/ac503964j
Redman E.A., Mellors J.S., Starkey J.A., Ramsey J.M.. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis-mass spectrometry[J]. Anal. Chem., 2016,88:2220-2226. doi: 10.1021/acs.analchem.5b03866
Batz N.G., Mellors J.S., Alarie J.P., Ramsey J.M.. Chemical vapor deposition of aminopropyl si lanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry[J]. Anal. Chem., 2014,86:3493-3500. doi: 10.1021/ac404106u
Mikuma T., Iwata Y.T., Miyaguchi H.. The use of a sulfonated capillary on chiral capillary electrophoresis/mass spectrometry of amphetamine-type stimulants for methamphetamine impurity profiling[J]. Forensic Sci. Int., 2015,249:59-65. doi: 10.1016/j.forsciint.2015.01.015
Li X.T., Hu H.K., Zhao S.L., Liu Y.M.. Microfluidic platform with in-chip electrophoresis coupled tomass spectrometry for monitoring neurochemical release from nerve cells[J]. Anal. Chem., 2016,88:5338-5344. doi: 10.1021/acs.analchem.6b00638
Li X.T., Zhao S.L., Hu H.K., Liu Y.M.. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis[J]. J. Chromatogr. A, 2016,1451:156-163. doi: 10.1016/j.chroma.2016.05.015
Fujii S.-i., Inagaki K., Miyashita S.-i.. A coupling system of capillary gel electrophoresis with inductively coupled plasma-mass spectrometry for the determination of double stranded DNA fragments[J]. Metallomics, 2013,5:424-428. doi: 10.1039/c3mt00057e
Wang C., Lee C.S., Smith R.D., Tang K.. Ultrasensitive sample quantitation via selected reaction monitoring using citp/cze-esi-triple quadrupole MS[J]. Anal. Chem., 2012,84:10395-10403. doi: 10.1021/ac302616m
Wang C., Lee C.S., Smith R.D., Tang K.. Capillary lsotachophoresis-nanoelectrospray ionization-selected reaction monitoring ms via a novel sheath less interface for high sensitivity sample quantification[J]. Anal. Chem., 2013,85:7308-7315. doi: 10.1021/ac401202c
Guo X.J., Fillmore T.L., Gao Y.Q., Tang K.Q.. Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification[J]. Anal. Chem, 2016,88:4418-4425. doi: 10.1021/acs.analchem.5b04912
Kler P.A., Posch T.N., Pattky M., Tiggelaar R.M., Huhn C.. Column coupling isotachophoresis-capillary electrophoresis with mass spectrometric detection:characterization and optimization of microfluidic interfaces[J]. J. Chromatogr. A, 2013,1297:204-212. doi: 10.1016/j.chroma.2013.04.046
Kler P.A., Huhn C.. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE-MS[J]. Anal. Bioanal. Chem., 2014,406:7163-7174. doi: 10.1007/s00216-014-8152-6
Piestansky J., Marakova K., Koval M., Mikus P.. Comparison of hydrodynamically closed isotachophoresis-capillary zone electrophoresis with hydrodynamically open capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis:pheniramine, its metabolite and phenylephrine in human urine[J]. J. Chromatogr. A, 2014,1358:285-292. doi: 10.1016/j.chroma.2014.06.083
Piestansky J., Marakova K., Veizerova L., Galba J., Mikus P.. On-line column coupled isotachophoresis-capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis:varenicline and its metabolite in human urine[J]. Anal. Chim. Acta, 2014,826:84-93. doi: 10.1016/j.aca.2014.04.003
Piest J., ansky ', Marakova K., Koval M., Havranek E., Mikus P.. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples[J]. Electrophoresis, 2015,36:3069-3079. doi: 10.1002/elps.201500351
Marak J., Stanova A.. Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry[J]. Electrophoresis, 2014,35:1268-1274. doi: 10.1002/elps.v35.9
Mala Z., Pantuckova P., Gebauer P., Bocek P.. Advanced electrolyte tuning and selectivity enhancement for highly sensitive analysis of cations by capillary ITP-ESI MS[J]. Electrophoresis, 2013,34:777-784. doi: 10.1002/elps.201200533
Gahoual R., Busnel J.-M., Beck A., Francois Y.-N., Leize-Wagner E.. Full antibody primary structure and microvariant characterization in a single injection using transient isotachophoresis and sheathless capillary electrophoresis-tandem mass spectrometry[J]. Anal. Chem, 2014,86:9074-9081. doi: 10.1021/ac502378e
He Y., Harir M., Chen G.. Capillary electrokinetic fractionation mass spectrometry (CEkF/MS):technology setup and application to metabolite fractionation from complex samples coupled at-line with ultrahighresolution mass spectrometry[J]. Electrophoresis, 2014,35:1965-1975. doi: 10.1002/elps.201400041
Huhner J., Lammerhofer M., Neususs C.. Capillary isoelectric focusing-mass spectrometry:coupling strategies and applications[J]. Electrophoresis, 2015,36:2670-2686. doi: 10.1002/elps.201500185
Huhner J., Jooss K., Neusubb C.. Interference-free mass spectrometric detection of capillary isoelectric focused proteins, including charge variants of a model monoclonal antibody[J]. Electrophoresis, 2017,38:914-921. doi: 10.1002/elps.201600457
Zhu G., Sun L., Keithley R.B., Dovichi N.J.. Capillary lsoelectric focusingtandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating pc12 cells by eight-plex isobaric tags for relative and absolute quantification[J]. Anal. Chem., 2013,85:7221-7229. doi: 10.1021/ac4009868
Zhu G., Sun L., Wojcik R.. A rapid cIEF-ESI-MS/MS method for host cell protein analysis of a recombinant human monoclonal antibody[J]. Talanta, 2012,98:253-256. doi: 10.1016/j.talanta.2012.07.017
Zhu G., Sun L., Yang P., Dovichi N.J.. On-line amino acid-based capillary isoelectric focusing-ESI-MS/MS for protein digests analysis[J]. Anal. Chim. Acta, 2012,750:207-211. doi: 10.1016/j.aca.2012.04.026
Li S., Guo C.-G., Chen L.. Impact of glutathione-HbA(1c) on HbA(1c) measurement in diabetes diagnosis via array isoelectric focusing liquid chromatography, mass spectrometry and ELISA[J]. Talanta, 2013,115:323-328. doi: 10.1016/j.talanta.2013.05.040
Przybylski C., Mokaddem M., Prull-Janssen M.. On-line capillary isoelectric focusing hyphenated to native electrospray ionization mass spectrometry for the characterization of interferon-gamma and variants[J]. Analyst, 2015,140:543-550. doi: 10.1039/C4AN01305K
Horka M., Karasek P., Salplachta J.. Capillary isoelectric focusing of probiotic bacteria from cow's milk in tapered fused silica capillary with offline matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification[J]. Anal. Chim. Acta, 2013,788:193-199. doi: 10.1016/j.aca.2013.05.059
Horka M., Salplachta J., Karasek P.. Combination of capillary isoelectric focusing in a tapered capillary with MALDI-TOF MS for rapid and reliable identification of dickeya species from plant samples[J]. Anal. Chem., 2013,85:6806-6812. doi: 10.1021/ac4009176
Nordman N., Lauren S., Kotiaho T.. Interfacing microchip isoelectric focusing with on-chip electrospray ionization mass spectrometry[J]. J. Chromatogr. A, 2015,1398:121-126. doi: 10.1016/j.chroma.2015.04.031
Zhang Z., Wang J., Hui L., Li L.. Poly(glycidyl methacrylate-divinylbenzene) based immobilized pH gradient capillary isoelectric focusing coupling with MALDI mass spectrometry for enhanced neuropeptide analysis[J]. Electrophoresis, 2012,33:661-665. doi: 10.1002/elps.201100447
Tiala H., Riekkola M.-L., Wiedmer S.K.. Study on capillaries covalently bound with phospholipid vesicles for open-tubular CEC and application to on-line open-tubular CEC-MS[J]. Electrophoresis, 2013,34:3180-3188. doi: 10.1002/elps.v34.22-23
Bragg W., Shamsi S.A.. High throughput analysis of chiral compounds using capillary electrochromatography (CEC) and CEC-mass spectrometry with cellulose based stationary phases[J]. Sep. Sci. Tech., 2013,48:2589-2599. doi: 10.1080/01496395.2012.719984
Orazio G. D', Fanali S.. Pressurized nano-liquid-junction interface for coupling capillary electrochromatography and nano-liquid chromatography with mass spectrometry[J]. J. Chromatogr. A, 2013,1317:67-76. doi: 10.1016/j.chroma.2013.08.052
Wu Q., Yu X.W., Wang Y.. Pressurized CEC coupled with QTOF-MS for urinary metabolomics[J]. Electrophoresis, 2014,35:2470-2478. doi: 10.1002/elps.v35.17
Simpson D.C., Yates A.J., Knox J.H., Langridge-Smith P.R.R.. A novel two-laser interface for coupling capillary electrochromatography with ion-trap timeof-flight mass spectrometry[J]. Int. J. Mass Spectrom., 2014,363:8-15. doi: 10.1016/j.ijms.2014.02.005
Orazio G. D', Asensio-Ramos M., Hernandez-Borges J., Fanali S., Angel Rodriguez-Delgado M.. Estrogenic compounds determination in water samples by dispersive liquid-liquid microextraction and micellar electrokinetic chromatography coupled to mass spectrometry[J]. J. Chromatogr. A, 2014,1344:109-121. doi: 10.1016/j.chroma.2014.04.005
Orazio G. D', Asensio-Ramos M., Hernandez-Borges J., Angel RodriguezDelgado M., Fanali S.. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt[J]. Electrophoresis, 2015,36:615-625. doi: 10.1002/elps.v36.4
Svidrnoch M., Lnenickova L., Valka I., Ondra P., Maier V.. Utilization of micellar electrokinetic chromatography-tandem mass spectrometry employed volatile micellar phase in the analysis of cathihone designer drugs[J]. J. Chromatogr. A, 2014,1356:258-265. doi: 10.1016/j.chroma.2014.06.058
Akamatsu S., Mitsuhashi T.. MEKC-MS/MS method using a volatile surfactant for the simultaneous determination of 12 synthetic cannabinoids[J]. J. Sep. Sci., 2014,37:304-307. doi: 10.1002/jssc.v37.3
Moreno-Gonzalez D., Torano J.S., Gamiz-Gracia L.. Micellar electrokinetic chromatography-electrospray ionization mass spectrometry employing a volatile surfactant for the analysis of amino acids in human urine[J]. Electrophoresis, 2013,34:2615-2622. doi: 10.1002/elps.v34.18
Wang X., Hou J., Jann M., Hon Y.Y., Shamsi S.A.. Development of a chiral micellar electrokinetic chromatography-tandem mass spectrometry assay for simultaneous analysis of warfarin and hydroxywarfarin metabolites: application to the analysis of patients serum samples[J]. J. Chromatogr. A, 2013,1271:207-216. doi: 10.1016/j.chroma.2012.11.046
Franze B., Engelhard C.. Fast separation characterization, and speciation of gold and silver nanoparticles and their ionic counterparts with micellar electrokinetic chromatography coupled to ICP-MS[J]. Anal. Chem., 2014,86:5713-5720. doi: 10.1021/ac403998e
Rodriguez J., Castaneda G., Munoz L.. Direct determination of pregabalin in human urine by nonaqueous CE-TOF-MS[J]. Electrophoresis, 2013,34:1429-1436. doi: 10.1002/elps.v34.9-10
Rodriguez J., Castaneda G., Munoz L., Villa J.C.. Quantitation of sunitinib, an oral multitarget tyrosine kinase inhibitor, and its metabolite in urine samples by nonaqueous capillary electrophoresis time of flight mass spectrometry[J]. Electrophoresis, 2015,36:1580-1587. doi: 10.1002/elps.v36.14
Zhang Y., Chen Z.. Nonaqueous CE ESI-IT-MS analysis of amaryllidaceae alkaloids[J]. J. Sep. Sci., 2013,36:1078-1084. doi: 10.1002/jssc.201201083
Zhang J., Chen Z.. Determination of matrine and oxymatrine in sophora flavescens by nonaqueous capillary electrophoresis-electrospray ionizationion trap-mass spectrometry[J]. Analy. Lett., 2013,46:651-662. doi: 10.1080/00032719.2012.726684
Chen Q., Zhang J., Zhang W., Chen Z.. Analysis of active alkaloids in the Menispermaceae family by nonaqueous capillary electrophoresis-ion trap mass spectrometry[J]. J. Sep. Sci., 2013,36:341-349. doi: 10.1002/jssc.201200678
Bonvin G., Schappler J., Rudaz S.. Non-aqueous capillary electrophoresis for the analysis of acidic compounds using negative electrospray ionization mass spectrometry[J]. J. Chromatogr. A, 2014,1323:163-173. doi: 10.1016/j.chroma.2013.11.011
Tho Chau D., Minh Vinh , Tuan Duc N., Hung T., Stuppner H., Ganzera M.. Analysis of alkaloids in Lotus (Nelumbo nucifera Gaertn.) leaves by nonaqueous capillary electrophoresis using ultraviolet and mass spectrometric detection[J]. J. Chromatography A, 2013,1302:174-180. doi: 10.1016/j.chroma.2013.06.002
Montealegre C., Sanchez-Hernandez L., Crego A.L., Marina M.L.. Determination and characterization of glycerophospholipids in olive fruit and oil by nonaqueous capillary electrophoresis with electrospray-mass spectrometric detection[J]. J. Agric. Food Chem., 2013,61:1823-1832. doi: 10.1021/jf304357e
Roscher J., Faber H., Stoffels M.. Nonaqueous capillary electrophoresis as separation technique to support metabolism studies by means of electrochemistry and mass spectrometry[J]. Electrophoresis, 2014,35:2386-2391. doi: 10.1002/elps.v35.16
Malik A.K., Grundmann M., Matysik F.-M.. Development of a fast capillary electrophoresis-time-of-flight mass spectrometry method for the speciation of organotin compounds under separation conditions of high electrical field strengths[J]. Talanta, 2013,116:559-562. doi: 10.1016/j.talanta.2013.07.025
Bonvin G., Rudaz S., Schappler J.. In-spray supercharging of intact proteins by capillary electrophoresis-electrospray ionization-mass spectrometry using sheath liquid interface[J]. Anal. Chim. Acta, 2014,813:97-105. doi: 10.1016/j.aca.2013.12.043
Mateos-Vivas M., Rodriguez-Gonzalo E., Dominguez-Alvarez J.. Analysis of free nucleotide monophosphates in human milk and effect of pasteurisation or high-pressure processing on their contents by capillary electrophoresis coupled to mass spectrometry[J]. Food Chem, 2015,174:348-355. doi: 10.1016/j.foodchem.2014.11.051
Rodriguez-Gonzalo E., Hernandez-Prieto R., Garcia-Gomez D., CarabiasMartinez R.. Capillary electrophoresis-mass spectrometry for direct determination of urinary modified nucleosides. Evaluation of synthetic urine as a surrogate matrix for quantitative analysis[J]. J. Chromatogr. B-Anal. Tech. Biomed. Life Sci, 2013,942:21-30.
Bustamante-Rangel M., Delgado-Zamarreno M.M., Perez-Martin L., Carabias-martinez R.. QuEChERS method for the extraction of isoflavones from soy-based foods before determination by capillary electrophoresis-electrospray ionization-mass spectrometry[J]. Microchem. J, 2013,108:203-209. doi: 10.1016/j.microc.2012.10.023
Marakova K., Piestansky J., Havranek E., Mikus P.. Simultaneous analysis of vitamins B in pharmaceuticals and dietary supplements by capillary electrophoresis hyphenated with triple quadrupole mass spectrometry[J]. Pharmazie, 2014,69:663-668.
Marakova K., Piest J., ansky ', Veizerova L.. Multidrug analysis of pharmaceutical and urine matrices by on-line coupled capillary electrophoresis and triple quadrupole mass spectrometry[J]. J. Sep. Sci., 2013,36:1805-1816. doi: 10.1002/jssc.v36.11
Jayo R.G., Thaysen-Andersen M., Lindenburg P.W.. Simple capillary electrophoresis-mass spectrometry method for complex glycan analysis using a flow-through microvial interface[J]. Anal. Chem., 2014,86:6479-6486. doi: 10.1021/ac5010212
Ginterova P., Sokolova B., Ondra P.. Determination of mushroom toxins ibotenic acid, muscimol and muscarine by capillary electrophoresis coupled with electrospray tandem mass spectrometry[J]. Talanta, 2014,125:242-247. doi: 10.1016/j.talanta.2014.03.019
Kondekova M., Maier V., Ginterova P., Marak J., Sevcik J.. Analysis of lysozyme in cheese samples by on-line combination of capillary zone electrophoresis and mass spectrometry[J]. Food Chem., 2014,153:398-404. doi: 10.1016/j.foodchem.2013.12.078
Daniel D., dos Santos V.B., Vidal D.T.R., do Lago C.L.. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry[J]. J. Chromatogr. A, 2015,1416:121-128. doi: 10.1016/j.chroma.2015.08.065
Ortiz-Villanueva E., Benavente F., Gimenez E., Yilmaz F., Sanz-Nebot V.. Preparation and evaluation of open tubular C18-silica monolithic microcartridges for preconcentration of peptides by on-line solid phase extraction capillary electrophoresis[J]. Anal. Chim. Acta, 2014,846:51-59. doi: 10.1016/j.aca.2014.06.046
Dong Y.-M., Chien K.-Y., Chen J.-T.. Site-specific separationand detection of phosphopeptide isomers with pH-mediated stacking capillary electrophoresis-electrospray ionization-tandem mass spectrometry[J]. J. Sep. Sci., 2013,36:1582-1589. doi: 10.1002/jssc.201300054
Prior A., Sanchez-Hernandez L., Sastre-Torano J., Marina M.L., de Jong G.J., Somsen G. W.. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis-mass spectrometry[J]. Electrophoresis, 2016,37:2410-2419. doi: 10.1002/elps.v37.17-18
Tascon M., Benavente F., Sanz-Nebot V.M., Gagliardi L.G.. Fast determination of harmala alkaloids in edible algae by capillary electrophoresis mass spectrometry[J]. Anal. Bioanal. Chem., 2015,407:3637-3645. doi: 10.1007/s00216-015-8579-4
Moreno-Gonzalez D., Lara F.J., Jurgovska N., Gamiz-Gracia L., GarciaCampana A.M.. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers[J]. Anal. Chim. Acta, 2015,891:321-328. doi: 10.1016/j.aca.2015.08.003
Warren C.R.. High diversity of small organic Nobserved in soil water[J]. Soil Biol. Biochem., 2013,57:444-450. doi: 10.1016/j.soilbio.2012.09.025
Warren C.R.. Response of organic N monomers in a sub-alpine soil to a drywet cycle[J]. Soil Biol. Biochem., 2014,77:233-242. doi: 10.1016/j.soilbio.2014.06.028
Marie A.-L., Przybylski C., Gonnet F.. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin[J]. Anal. Chim. Acta, 2013,800:103-110. doi: 10.1016/j.aca.2013.09.023
Ma Lopez-Montes A., Dupont A.-L., Desmazieres B., Lavedrine B.. Identification of synthetic dyes in early colour photographs using capillary electrophoresis and electrospray ionisation-mass spectrometry[J]. Talanta, 2013,114:217-226. doi: 10.1016/j.talanta.2013.04.020
Causon T.J., Maringer L., Buchberger W., Klampfl C.W.. Addition of reagents to the sheath liquid:a novel concept in capillary electrophoresis-mass spectrometry[J]. J. Chromatogr. A, 2014,1343:182-187. doi: 10.1016/j.chroma.2014.04.002
Medina-Casanellas S., Benavente F., Barbosa J., Sanz-Nebot V.. Preparation and evaluation of an immunoaffinity sorbent with Fab' antibody fragments for the analysis of opioid peptides by on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry[J]. Anal. Chim. Acta, 2013,789:91-99. doi: 10.1016/j.aca.2013.06.030
Barroso A., Gimenez E., Benavente F., Barbosa J., Sanz-Nebot V.. Analysis of human transferrin glycopeptides by capillary electrophoresis and capillary liquid chromatography-mass spectrometry. Application to diagnosis of alcohol dependence[J]. Anal. Chim. Acta, 2013,804:167-175. doi: 10.1016/j.aca.2013.09.044
Barroso A., Gimenez E., Benavente F., Barbosa J., Sanz-Nebot V.. Modelling the electrophoretic migration behaviour of peptides and glycopeptides from glycoprotein digests in capillary electrophoresis-mass spectrometry[J]. Anal. Chim. Acta, 2015,854:169-177. doi: 10.1016/j.aca.2014.10.038
Brueckner C., Imhof D., Scriba G.K.E.. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide GlyPhe-Asp-GlyOH in alkaline solution[J]. J. Pharm. Biomed. Anal, 2013,76:96-103. doi: 10.1016/j.jpba.2012.12.012
Catala-Clariana S., Benavente F., Gimenez E., Barbosa J., Sanz-Nebot V.. Identification of bioactive peptides in hypoallergenic infant milk formulas by CE-TOF-MS assisted by semiempirical model of electromigration behavior[J]. Electrophoresis, 2013,34:1886-1894. doi: 10.1002/elps.201200547
Haselberg R., de Jong G.J., Somsen G.W.. Low-flow sheathless capillary electrophoresis-mass spectrometry for sensitive glycoform profiling of intact pharmaceutical proteins[J]. Anal. Chem., 2013,85:2289-2296. doi: 10.1021/ac303158f
Haselberg R., Oliveira S., van der Meel R., Somsen G.W., de Jong G.J.. Capillary electrophoresis-based assessment of nanobody affinity and purity[J]. Anal. Chim. Acta, 2014,818:1-6. doi: 10.1016/j.aca.2014.01.048
G. Klein, J. P. Schanstra, J. Hoffmann, et al. , Proteomics as a quality control tool of pharmaceutical probiotic bacterial lysate products, PLoS One 8(2013).
Kohler I., Augsburger M., Rudaz S., Schappler J.. New insights in carbohydrate-deficient transferrin analysis with capillary electrophoresis-mass spectrometry[J]. Forensic Sci. In., 2014,243:14-22. doi: 10.1016/j.forsciint.2014.03.014
Pont L., Benavente F., Barbosa J., Sanz-Nebot V.. Analysis of transthyretin in human serum bycapillary zone electrophoresis electrospray ionization timeof-flight mass spectrometry. Application to familial amyloidotic polyneuropathy type I[J]. Electrophoresis, 2015,36:1265-1273. doi: 10.1002/elps.v36.11-12
Bertoletti L., Schappler J., Colombo R.. Evaluation of capillary electrophoresis-mass spectrometry for the analysis of the conformational heterogeneity of intact proteins using beta(2)-microglobulin as model compound[J]. Anal. Chim. Acta, 2016,945:102-109. doi: 10.1016/j.aca.2016.10.010
Han M., Rock B.M., Pearson J.T., Rock D.A.. Intact mass analysis of monoclonal antibodies by capillary electrophoresis-Mass spectrometry[J]. J. Chromatogr. BAnal. Tech. Biomed. Life Sci., 2016,1011:24-32. doi: 10.1016/j.jchromb.2015.12.045
Khan N., Mironov G., Berezovski M.V.. Direct detection of endogenous MicroRNAs and their post-transcriptional modifications in cancer serum by capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal. Chem., 2016,408:2891-2899. doi: 10.1007/s00216-015-9277-y
Bunz S.-C., Cutillo F., Neusuess C.. Analysis of native and APTS-labeled Nglycans by capillary electrophoresis/time-of-flight mass spectrometry[J]. Anal. Bioanal. Chem., 2013,405:8277-8284. doi: 10.1007/s00216-013-7231-4
Bunz S.-C., Rapp E., Neusuess C.. Capillary electrophoresis/mass spectrometry of apts-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems[J]. Anal. Chem., 2013,85:10218-10224. doi: 10.1021/ac401930j
Weissinger E.M., Mullen W., Albalat A.. Urinary proteomics employing capillary electrophoresis coupled to mass spectrometry in the monitoring of patients after stem cell transplantation[J]. Methods Mol. Biol, 2014,1109:293-306. doi: 10.1007/978-1-4614-9437-9
Contreras-Gutierrez P.K., Hurtado-Fernandez E., Gomez-Romero M.. Determination of changes in the metabolic profile of avocado fruits (Persea americana) by two CE-MS approaches (targeted and non-targeted)[J]. Electrophoresis, 2013,34:2928-2942.
Garcia A., Naz S., Barbas C.. Metabolite fingerprinting by capillary electrophoresis-mass spectrometry[J]. Methods Mol. Biol., 2014,1198:107-123. doi: 10.1007/978-1-4939-1258-2
Godzien J., Garcia-Martinez D., Martinez-Alcazar P., Ruperez F.J., Barbas C.. Effect of a nutraceutical treatment on diabetic rats with targeted and CE-MS non-targeted approaches[J]. Metabolomics, 2013,9:S188-S202. doi: 10.1007/s11306-011-0351-y
Ibanez C., Simo C., Valdes A.. Metabolomics of adherent mammalian cells by capillary electrophoresis-mass spectrometry:HT-29 cells as case study[J]. J. Pharm. Biomed. Anal., 2015,110:83-92. doi: 10.1016/j.jpba.2015.03.001
Kami K., Fujimori T., Sato H.. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry[J]. Metabolomics, 2013,9:444-453. doi: 10.1007/s11306-012-0452-2
Kok M.G.M., Ruijken M.M.A., Swann J.R.. Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal Chem., 2013,405:2585-2594. doi: 10.1007/s00216-012-6701-4
Kok M.G.M., Somsen G.W., de Jong G.J.. Comparison of capillary electrophoresis-mass spectrometry and hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine[J]. Talanta, 2015,132:1-7. doi: 10.1016/j.talanta.2014.08.047
Kume S., Yamato M., Tamura Y.. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats[J]. PLoS One, 2015,10e0120106. doi: 10.1371/journal.pone.0120106
Kwon H.J., Ohmiya Y.. Metabolomic analysis of differential changes in metabolites during ATP oscillations in chondrogenesis[J]. BioMed Res. Int, 2013,2013213972.
Muroya S., Oe M., Nakajima I., Ojima K., Chikuni K.. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles[J]. Meat Sci, 2014,98:726-735. doi: 10.1016/j.meatsci.2014.07.018
Naz S., Garcia A., Rusak M., Barbas C.. Method development and validation for rat serum fingerprinting with CE-MS:application to ventilator-inducedlung-injury study[J]. Anal. Bioanal. Chem., 2013,405:4849-4858. doi: 10.1007/s00216-013-6882-5
Tsuruoka M., Hara J., Hirayama A.. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients[J]. Electrophoresis, 2013,34:2865-2872.
Zeng J., Kuang H., Hu C.. Effect of bisphenol a on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry[J]. Environ. Sci. Tech., 2013,47:7457-7465. doi: 10.1021/es400490f
Zeng J., Yin P., Tan Y.. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry[J]. J. Proteome Res, 2014,13:3420-3431. doi: 10.1021/pr500390y
Yamamoto H., Sasaki K.. Metabolomics-based approach for ranking the candidate structures of unidentified peaks in capillary electrophoresis timeof-flight mass spectrometry[J]. Electrophoresis, 2016,38:1053-1059.
Isbell T.A., Strickland E.C., Hitchcock J., McIntire G., Colyer C.L.. Capillary electrophoresis-mass spectrometry determination of morphine and its isobaric glucuronide metabolites[J]. J. Chromatogr. B-Anal. Tech. Biomed. Life Sci., 2015,980:65-71. doi: 10.1016/j.jchromb.2014.11.035
Merola G., Fu H., Tagliaro F., Macchia T., McCord B.R.. Chiral separation of 12 cathinone analogs bycyclodextrin-assisted capillary electrophoresis with UV and mass spectrometry detection[J]. Electrophoresis, 2014,35:3231-3241. doi: 10.1002/elps.v35.21-22
Wozniakiewicz A., Wietecha-Posluszny R., Wozniakiewicz M., Bryczek E., Koscielniak P.. A quick method for determination of psychoactive agents in serum and hair by using capillary electrophoresis and mass spectrometry[J]. J. Pharm. Biomed. Anal., 2015,111:177-185. doi: 10.1016/j.jpba.2015.03.029
Said N., Gahoual R., Kuhn L.. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis-Tandem mass spectrometry as nanoESI infusion platform and separation method[J]. Anal. Chim. Acta, 2016,918:50-59. doi: 10.1016/j.aca.2016.03.006
Kohler I., Schappler J., Rudaz S.. Highly sensitive capillary electrophoresismass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine[J]. Anal. Chim. Acta, 2013,780:101-109. doi: 10.1016/j.aca.2013.03.065
Kohler I., Schappler J., Sierro T., Rudaz S.. Dispersive liquid-liquid microextraction combined with capillary electrophoresis and time-offlight mass spectrometry for urine analysis[J]. J. Pharm. Biomed. Anal., 2013,73:82-89. doi: 10.1016/j.jpba.2012.03.036
van Wijk A.M., Niederlander H.A.G., van Ogten M.D., de Jong G.J.. Sensitive CEMS analysis of potentially genotoxic alkylation compounds using derivatization and electrokinetic injection[J]. Anal. Chim. Acta, 2015,874:75-83. doi: 10.1016/j.aca.2015.02.067
Chen J., Shi Q., Wang Y., Li Z., Wang S.. Dereplication of known nucleobase and nucleoside compounds in natural product extracts by capillary electrophoresis-high resolution mass spectrometry[J]. Molecules, 2015,20:5423-5437. doi: 10.3390/molecules20045423
Gusenkov S., Ackaert C., Stutz H.. Separation and characterization of nitrated variants of the major birch pollen allergen by CZE-ESI-mu TOF MS[J]. Electrophoresis, 2013,34:2695-2704. doi: 10.1002/elps.v34.18
Nemes P., Rubakhin S.S., Aerts J.T., Sweedler J.V.. Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry[J]. Nat. Protoc., 2013,8:783-799. doi: 10.1038/nprot.2013.035
Causon T.J., Himmelsbach M., Buchberger W., Klampfl C.W.. Identification of polyimide materials using quantitative CE with UV and QTOF-MS detection[J]. Electrophoresis, 2013,34:944-949. doi: 10.1002/elps.201200525
Hintersteiner I., Himmelsbach M., Klampfl C., Buchberger W.W.. Characterization of hindered amine light stabilizers employing capillary electrophoresis coupled to quadrupole time-of-flight mass spectrometry[J]. Electrophoresis, 2014,35:1368-1374. doi: 10.1002/elps.v35.9
Kula A., Krol M., Wietecha-Posluszny R., Wozniakiewicz M., Koscielniak P.. Application of CE-MS to examination of black inkjet printing inks for forensic purposes[J]. Talanta, 2014,128:92-101. doi: 10.1016/j.talanta.2014.04.004
Nolte T., Posch T.N., Huhn C., Andersson J.T.. Desulfurized fuels from athabasca bitumen and their polycyclic aromatic sulfur heterocycles. Analysis based on capillaryelectrophoresis coupled with TOF MS[J]. Energ. Fuel, 2013,27:97-107. doi: 10.1021/ef301424d
Michalke B., Lucio M., Berthele A., Kanawati B.. Manganese speciation in paired serum and CSF samples using SEC-DRC-ICP-MS and CE-ICP-DRC-MS[J]. Anal. Bioanal. Chem., 2013,405:2301-2309. doi: 10.1007/s00216-012-6662-7
Yassine M.M., Dabek-Zlotorzynska E., Harir M., Schmitt-Kopplin P.. Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultra-high-resolution fourier transform ion cyclotron resonance mass spectrometry[J]. Anal. Chem., 2012,84:6586-6594. doi: 10.1021/ac300798g
Yan X., Essaka D.C., Sun L., Zhu G., Dovichi N.J.. Bottom-up proteome analysis of E. coli using capillary zone electrophoresis-tandem mass spectrometry with an electrokinetic sheath-flow electrospray interface[J]. Proteomics, 2013,13:2546-2551. doi: 10.1002/pmic.v13.17
Zhu G., Sun L., Yan X., Dovichi N.J.. Bottom-up proteomics of escherichia coli using dynamic ph junction preconcentration and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry[J]. Anal. Chem., 2014,86:6331-6336. doi: 10.1021/ac5004486
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
Yang Feng , Yang-Qing Tian , Yong-Qiang Zhao , Sheng-Jun Chen , Bi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Dan Zhou , Liangjin Bao , Haoqi Long , Duo Zhou , Yuwei Xu , Bo Wang , Chuanqin Xia , Liang Xian , Chengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412