Citation: Xuan Qing-Qing, Wei Ya-Hui, Song Qiu-Ling. Spiro(phosphoamidite) ligand (SIPHOS)/Cu(OTf)2-catalyzed highly regio-and stereo-selective hydroborations of internal alkynes with diborane in water[J]. Chinese Chemical Letters, ;2017, 28(6): 1163-1166. doi: 10.1016/j.cclet.2017.04.031 shu

Spiro(phosphoamidite) ligand (SIPHOS)/Cu(OTf)2-catalyzed highly regio-and stereo-selective hydroborations of internal alkynes with diborane in water

  • Corresponding author: Song Qiu-Ling, qsong@hqu.edu.cn
  • Received Date: 1 April 2017
    Revised Date: 19 April 2017
    Accepted Date: 25 April 2017
    Available Online: 2 June 2017

Figures(4)

  • The highly regio-and stereoselective hydroborations of unactivated internal alkynes with diboron compound catalyzed by Cu(OTf)2 with spiro(phosphoamidite) as ligand in the presence of Cs2CO3 in water was developed. This protocol was applied efficiently in the aqueous synthesis of multi-substituted vinylboranes.
  • 加载中
    1. [1]

      (a) J. Cornella, J.T. Edwards, T. Qin, et al., Practical Ni-catalyzed aryl-alkyl crosscoupling of secondary redox-active esters, J. Am. Chem. Soc. 138(2016) 2174-2177;
      (b) F. Toriyama, J. Cornella, L. Wimmer, et al., Redox-active esters in Fecatalyzed C-C coupling, J. Am. Chem. Soc. 138(2016) 11132-11135;
      (c) J. Wang, T. Qin, T.G. Chen, et al., Nickel-catalyzed cross-coupling of redoxactive esters with boronic acids, Angew. Chem. Int. Ed. 55(2016) 9676-9679;
      (d) C.J. Li, Organic reactions in aqueous media with a focus on carbon-carbon bond formations:a decade update, Chem. Rev. 105(2005) 3095-3166.

    2. [2]

      Cornils B., Herrmann W.A.. Aqueous-phase Organometallic Catalysis, WileyVCH. Co[J]. Weinheim, 2004.

    3. [3]

      (a) N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev. 95(1995) 2457-2483;
      (b) T. Hayashi, K. Yamasaki, Rhodium-catalyzed asymmetric 1, 4-addition and its related asymmetric reactions, Chem. Rev. 103(2003) 2829-2844;
      (c) T.R. Wu, J.M. Chong, asymmetric conjugate alkenylation of enones catalyzed by chiral diols, J. Am. Chem. Soc. 129(2007) 4908-4909.

    4. [4]

      (a) X. He, J.F. Hartwig, True metal-catalyzed hydroboration with titanium, J. Am. Chem. Soc. 118(1996) 1696-1702;
      (b) N. Iwadate, M. Suginome, Synthesis of B-protected β-styrylboronic acids via Iridium-catalyzed hydroboration of alkynes with 1, 8-naphthalenediaminatoborane leading to iterative synthesis of oligo(phenylenevinylene)s, Org. Lett. 11(2009) 1899-1902;
      (c) Ⅰ. Beletskaya, A. Pelter, Hydroborations catalysed by transition metal complexes, Tetrahedron 53(1997) 4957-5026;
      (d) R. Barbeyron, E. Benedetti, J. Cossy, et al., Recent developments in alkyne borylations, Tetrahedron 70(2014) 8431-8452;
      (e) H. Yoshida, S. Kawashima, Y. Takemoto, et al., Copper-catalyzed borylation reactions of alkynes and arynes, Angew. Chem. Int. Ed. 51(2012) 235-238;
      (f) Y.W. Zhao, Q. Feng, Q.L. Song, Copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids under ligand-free or both ligand-and basefree conditions, Chin. Chem. Lett. 27(2016) 571-574.

    5. [5]

      Bidal Y.D., Lazreg F., Cazin C.S.J.. Copper-catalyzed regioselective formation of tri-and tetrasubstituted vinylboronates in air[J]. ACS Catal, 2014,4:1564-1569. doi: 10.1021/cs500130y

    6. [6]

      (a) T. Kitanosono, P. Xu, S. Isshiki, L. Zhu, S. Kobayashi, Cu(ii)-Catalyzed asymmetric boron conjugate addition to α, β-unsaturated imines in water, Chem. Commun. 50(2014) 9336-9339;
      (b) S. Radomkit, A.H. Hoveyda, Enantioselective synthesis of boron-substituted quaternary carbon stereogenic centers through NHC-catalyzed conjugate additions of (Pinacolato)boron units to enones, Angew. Chem. Int. Ed. 53(2014) 3387-3391;
      (c) A.L. Moure, R.G. Arrayás, D.J. Cárdenas, I. Alonso, J.C. Carretero, Regiocontrolled CuI-catalyzed borylation of propargylic-functionalized internal alkynes, J. Am. Chem. Soc. 134(2012) 7219-7222;
      (d) T. Kitanosono, P. Xu, S. Kobayashi, Heterogeneous and homogeneous chiral Cu(ii) catalysis in water:enantioselective boron conjugate additions to dienones and dienoesters, Chem. Commun. 49(2013) 8184-8186;
      (e) Y. Sasaki, Y. Horita, C. Zhong, M. Sawamura, H. Ito, Copper(Ⅰ)-catalyzed regioselective monoborylation of 1, 3-enynes with an internal triple bond:selective synthesis of 1, 3-dienylboronates and 3-alkynylboronates, Angew. Chem. Int. Ed. 50(2011) 2778-2782;
      (f) S. Mannathan, M. Jeganmohan, C.H. Cheng, Nickel-catalyzed borylative coupling of alkynes, enones, and bis(pinacolato)diboron as a route to substituted alkenyl boronates, Angew. Chem. Int. Ed. 48(2009) 2192-2195.

    7. [7]

      Tai C.C., Yu M.S., Chen Y.L.. Synthesis of a guanidine NHC complex and its application in borylation reactions[J]. Chem. Commun, 2014,50:4344-4346. doi: 10.1039/C4CC00550C

    8. [8]

      (a) H. Jang, A.R. Zhugralin, Y. Lee, A.H. Hoveyda, Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC-Cu-catalyzed hydroboration of terminal alkynes. utility in chemical synthesis and mechanistic basis for selectivity, J. Am. Chem. Soc. 133(2011) 7859-7871;
      (b) H.R. Kim, J. Yun, Highly regio-and stereoselective synthesis of alkenylboronic esters by copper-catalyzed boron additions to disubstituted alkynes, Chem. Commun. 47(2011) 2943-2945.

    9. [9]

      Lee J.E., Kwon J., Yun J.. Copper-catalyzedaddition of diboronreagents to[small alpha], [small beta]-acetylenic esters:efficient synthesis of β-boryl-α, β-ethylenic esters[J]. Chem. Commun, 2008,44:733-734.

    10. [10]

      Semba K., Fujihara T., Terao J., Tsuji Y.. Copper-catalyzed highly regio-and stereoselective directed hydroboration of unsymmetrical internal alkynes:controlling regioselectivity by choice of catalytic species[J]. Chem. Eur. J., 2012,18:4179-4184. doi: 10.1002/chem.v18.14

    11. [11]

      Xuan Q.Q., Ren C.L., Liu L., Wang D., Li C.J.. Copper(ii)-catalyzed highly regioand stereo-selective hydrosilylation of unactivated internal alkynes with silylborate in wate[J]. Org. Biomol. Chem, 2015,13:5871-5874. doi: 10.1039/C5OB00694E

    12. [12]

      (a) M.L. Li, S. Yang, X.C. Su, et al., Mechanism studies of Ir-catalyzed asymmetric hydrogenation of unsaturated carboxylic acids, J. Am. Chem. Soc. 139(2017) 541-547;
      (b) L. Yu, et al., Enantioselective iridium-catalyzed hydrogenation of α, β-disubstituted nitroalkenes, Chem. Commun. 52(2016) 4812-4815;
      (c) C. Guo, D.W. Sun, S. Yang, et al., Iridium-catalyzed asymmetric hydrogenation of 2-Pyridyl cyclic imines:a highly enantioselective approach to nicotine derivatives, J. Am. Chem. Soc. 137(2015) 90-93;
      (d) D.H. Bao, H.L. Wu, C.L. Liu, J.H. Xie, Q.L. Zhou, Developmentof chiral spiro PN-S ligands for iridium-catalyzed asymmetric hydrogenation of β-alkylb-ketoesters, Angew. Chem. Int. Ed. 54(2015) 8791-8794;
      (e) J.H. Xie, D.H. Bao, Q.L. Zhou, Recent advances in the development of chiral metal catalysts for the asymmetric hydrogenation of ketones, Synthesis 47(2015) 460-471.

  • 加载中
    1. [1]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    4. [4]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    5. [5]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    6. [6]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    7. [7]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    8. [8]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    9. [9]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    10. [10]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    11. [11]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    12. [12]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    15. [15]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    16. [16]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    17. [17]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    18. [18]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    19. [19]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    20. [20]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

Metrics
  • PDF Downloads(1)
  • Abstract views(984)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return