Citation: Ni Meng, Zeng Wen-Jun, Xie Xin, Chen Ze-Lin, Wu Hao, Yu Chang-Min, Li Bo-Wen. Intracellular enzyme-activatable prodrug for real-time monitoring of chlorambucil delivery and imaging[J]. Chinese Chemical Letters, ;2017, 28(6): 1345-1351. doi: 10.1016/j.cclet.2017.04.024 shu

Intracellular enzyme-activatable prodrug for real-time monitoring of chlorambucil delivery and imaging

  • Corresponding author: Li Bo-Wen, msli860316@mail.scut.edu.cn
  • 1 These authors contributed equally to this work
  • Received Date: 19 February 2017
    Revised Date: 4 April 2017
    Accepted Date: 20 April 2017
    Available Online: 23 June 2017

Figures(6)

  • Carboxylesterase, a necessary enzyme in various mammalian cells, has been employed in various biological applications. Herein, we designed and synthesized a novel carboxylesterase-based prodrug, which can realize simultaneous drug-release imaging and cancer chemotherapy. This prodrug comprises three parts:coumarin as the fluorophore and the cleavable architecture, chlorambucil as the anticancer drug, and acetyl group as the enzyme-responsive unit. The presence of carboxylesterase leads to the activation of coumarin fluorescence, and this fluorescence serves as the reporting signal for assessing the enzyme level and drug release. Moreover, the prodrug was incorporated in liposome for monitoring drug release and chemotherapeutic effect in living cells. Upon internalization by HeLa cells, the prodrug can release chlorambucil and exhibit high cytotoxicity. This approach may provide some helpful insights for enhancing therapeutic effect and tracking the release of prodrug.
  • 加载中
    1. [1]

      Kumar R., Shin W.S., Sunwoo K.. Small conjugate-based theranostic agents:an encouraging approach for cancer therapy[J]. Chem. Soc. Rev., 2015,44:6670-6683. doi: 10.1039/C5CS00224A

    2. [2]

      Liu Z.L., Zhou Z.Y., Tian W.. Discovery of novel 2-n-aryl-substituted benzenesulfonamidoacetamides:orally bioavailable tubulin polymerization inhibitors with marked antitumor activities[J]. Chem. Med. Chem., 2012,7:680-693. doi: 10.1002/cmdc.v7.4

    3. [3]

      Zhou J., Du X.W., Yamagata N., Xu B.. Enzyme-instructed self-assembly of small d-peptides as a multiple step process for selectively killing cancer cells[J]. J. Am. Chem. Soc., 2016,138:3813-3823. doi: 10.1021/jacs.5b13541

    4. [4]

      Liang X.H., Sun Y., Liu L.S.. Regioselective synthesis and initial evaluation of a folate receptor targeted rhaponticin prodrug[J]. Chin. Chem. Lett., 2012,23:1133-1136. doi: 10.1016/j.cclet.2012.08.006

    5. [5]

      Nguyen K.T., Zhao Y.L.. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics[J]. Acc. Chem. Res., 2015,48:3016-3025. doi: 10.1021/acs.accounts.5b00316

    6. [6]

      Zhou Y., Li H., Yang Y.W.. Controlled drug delivery systems based on calixarenes[J]. Chin. Chem. Lett., 2015,26:825-828. doi: 10.1016/j.cclet.2015.01.038

    7. [7]

      Yu Z.Q., Xu Q., Dong C.B.. Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform[J]. Curr. Pharm. Des., 2015,21:4342-4354. doi: 10.2174/1381612821666150901104821

    8. [8]

      Wang H.X., Xie H.Y., Wu J.P.. Structure-based rational design of prodrugs to enable their combination with polymeric nanoparticle delivery platforms for enhanced antitumor efficacy[J]. Angew. Chem. Int. Ed., 2014,53:11532-11537. doi: 10.1002/anie.201406685

    9. [9]

      Ulbrich K., Holá K., V. Šubr. Targeted drug delivery with polymers and magnetic nanoparticles:covalent and noncovalent approaches, release control, and clinical studies[J]. Chem. Rev., 2016,116:5338-5431. doi: 10.1021/acs.chemrev.5b00589

    10. [10]

      Yu Z.Q., Schmaltz R.M., Bozeman T.C.. Selective tumor cell targeting by the disaccharide moiety of bleomycin[J]. J. Am. Chem. Soc., 2013,135:2883-2886. doi: 10.1021/ja311090e

    11. [11]

      Santra S., Kaittanis C., Santiesteban O.J., Perez J.M.. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy[J]. J. Am. Chem. Soc., 2011,133:16680-16688. doi: 10.1021/ja207463b

    12. [12]

      Wu X.Y., Li X.C., Mi J., You J., Hai L.. Design, synthesis and preliminary biological evaluation of brain targeting L-ascorbic acid prodrugs of ibuprofen[J]. Chin. Chem. Lett., 2013,24:117-119. doi: 10.1016/j.cclet.2013.01.022

    13. [13]

      Montagner D., Yap S.Q., Ang W.H.. A fluorescent probe for investigating the activation of anticancer platinum(iv) prodrugs based on the cisplatin scaffold[J]. Angew. Chem. Int. Ed., 2013,52:11785-11789. doi: 10.1002/anie.v52.45

    14. [14]

      Wu X.M., Sun X.R., Guo Z.Q.. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug[J]. J. Am. Chem. Soc., 2014,136:3579-3588. doi: 10.1021/ja412380j

    15. [15]

      Zhang L.L., Zhu H.K., Zhao C.C., Gu X.F.. A near-infrared fluorescent probe for monitoring fluvastatin-stimulated endogenous H2S production[J]. Chin. Chem. Lett., 2017,28:218-221. doi: 10.1016/j.cclet.2016.07.008

    16. [16]

      Wu J., Zhao L.L., Xu X.D.. Hydrophobic cysteine poly(disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics[J]. Angew. Chem. Int., 2015,54:9218-9223. doi: 10.1002/anie.201503863

    17. [17]

      Spangler B., Fontaine S.D., Shi Y.H.. A novel tumor-activated prodrug strategy targeting ferrous iron is effective in multiple preclinical cancer models[J]. J. Med. Chem., 2016,59:11161-11170. doi: 10.1021/acs.jmedchem.6b01470

    18. [18]

      Fan J.Q., Fang G., Zeng F., Wang X.D., Wu S.Z.. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo-and photodynamic therapeutic actions[J]. Small, 2013,9:613-621. doi: 10.1002/smll.v9.4

    19. [19]

      Du J.Z., Du X.J., Mao C.Q., Wang J.. Tailor-made dual ph-sensitive polymerdoxorubicin nanoparticles for efficient anticancer drug delivery[J]. J. Am. Chem. Soc., 2011,133:17560-17563. doi: 10.1021/ja207150n

    20. [20]

      Thambi T., Park J.H., Lee D.S.. Hypoxia-responsive nanocarriers for cancer imaging and therapy:recent approaches and future perspectives[J]. Chem. Commun., 2016,52:8492-8500. doi: 10.1039/C6CC02972H

    21. [21]

      Miranda E., Nordgren I.K., Male A.L.. A cyclic peptide inhibitor of hif-1 heterodimerization that inhibits hypoxia signaling in cancer cells[J]. J. Am. Chem. Soc., 2013,135:10418-10425. doi: 10.1021/ja402993u

    22. [22]

      Sun X.X., Ai M.D., Wang Y.. Selective induction of tumor cell apoptosis by a novel P450-mediated reactive oxygen species (ROS) inducer methyl 3-(4-nitrophenyl) propiolate[J]. J. Biol. Chem., 2013,288:8826-8837. doi: 10.1074/jbc.M112.429316

    23. [23]

      Durantini A.M., Greene E.L., Lincoln R., Martínez S.R., Cosa G.. Reactive oxygen species mediated activation of a dormant singlet oxygen photosensitizer:from autocatalytic singlet oxygen amplification to chemicontrolled photodynamic therapy[J]. J. Am. Chem. Soc., 2016,138:1215-1225. doi: 10.1021/jacs.5b10288

    24. [24]

      Wang J., Wu Y.L., Zeng F., Huang S.L., Wu S.Z.. AIE fluorophore with enhanced cellular uptake for tracking esterase-activated release of taurine and ROS scavenging[J]. Faraday Discuss., 2017,196:335-350. doi: 10.1039/C6FD00118A

    25. [25]

      Callmann C.E., Barback C.V., Thompson M.P.. Therapeutic enzymeresponsive nanoparticles for targeted delivery and accumulation in tumors[J]. Adv. Mater., 2015,27:4611-4615. doi: 10.1002/adma.v27.31

    26. [26]

      Roth M.E., Green O., Gnaim S., Shabat D.. Dendritic, oligomeric, and polymeric self-immolative molecular amplification[J]. Chem. Rev., 2016,116:1309-1352. doi: 10.1021/acs.chemrev.5b00372

    27. [27]

      J. Sloniec-Myszk, U. Resch-Genger, Hennig A.. Chiral, j-aggregate-forming dyes for alternative signal modulation mechanisms in self-immolative enzymeactivatable optical probes[J]. J. Phys. Chem. B, 2016,120:877-885. doi: 10.1021/acs.jpcb.5b10526

    28. [28]

      Jourden J.L.M., Daniel K.B., Cohen S.M.. Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors[J]. Chem. Commun., 2011,47:7968-7970. doi: 10.1039/c1cc12526e

    29. [29]

      Ji W.D., Li N.J., Chen D.Y.. Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a twophoton process[J]. J. Mater. Chem. B, 2013,1:5942-5949. doi: 10.1039/c3tb21206h

    30. [30]

      He L.W., Xu Q.Y., Liu Y.. Coumarin-based turn-on fluorescence probe for specific detection of glutathione over cysteine and homocysteine[J]. ACS Appl. Mater. Interfaces, 2015,7:12809-12813. doi: 10.1021/acsami.5b01934

    31. [31]

      Kumari C., Sain D., Kumar A.. Intracellular detection of hazardous Cd2+ through a fluorescence imaging technique by using a nontoxic coumarin based sensor[J]. Dalton Trans., 2017,46:2524-2531. doi: 10.1039/C6DT04833A

    32. [32]

      Gao H.L., Zhang Q.Y., Yu Z.Q., He Q.. Cell-penetrating peptide-based intelligent liposomal systems for enhanced drug delivery[J]. Curr. Pharm. Biotechnol., 2014,15:210-219. doi: 10.2174/1389201015666140617092552

    33. [33]

      Lei F., Fan W., Li X.K.. Design, synthesis and preliminary bio-evaluation of glucose-cholesterol derivatives as ligands for brain targeting liposomes[J]. Chin. Chem. Lett., 2011,22:831-834. doi: 10.1016/j.cclet.2010.12.056

    34. [34]

      Yu M., Guo F., Tan F.P., Li N.. Dual-targeting nanocarrier system based on CO2-generated thermosensitive liposomes and gold nanorods for cancer thermochemotherapy[J]. J. Control. Release, 2015,215:91-100. doi: 10.1016/j.jconrel.2015.08.003

    35. [35]

      Pattni B.S., Chupin V.V., Torchilin V.P.. New developments in liposomal drug delivery[J]. Chem. Rev., 2015,115:10938-10966. doi: 10.1021/acs.chemrev.5b00046

    36. [36]

      Yang C.B., Wang H.M., Li D.X., Wang L.. Molecular hydrogels with esterase-like activity[J]. Chin. J. Chem., 2013,31:494-500. doi: 10.1002/cjoc.201300021

    37. [37]

      Zhang T., Huang P., Shi L.L.. Self-assembled nanoparticles of amphiphilic twin drug from floxuridine and bendamustine for cancer therapy[J]. Mol. Pharm., 2015,12:2328-2336. doi: 10.1021/acs.molpharmaceut.5b00005

    38. [38]

      Zhang P.S., Huang Y., Zeng F., Xia X.T., Wu S.Z.. A ratiometric two-photon fluorescent probe for detecting carboxylesterase in living cells[J]. Sci. Sin. Chim., 2017(47):1-8.

    39. [39]

      Pramod P.S., Deshpande N.U., Jayakannan M.. Real-time drug release analysis of enzyme and ph responsive poly-saccharide nanovesicles[J]. J. Phys. Chem. B, 2015,119:10511-10523.

    40. [40]

      Sanghani S.P., Quinney S.K., Fredenburg T.B.. Carboxylesterases expressed in human colon tumor tissue and their role in cpt-11 hydrolysis[J]. Clin. Cancer Res., 2003,9:4983-4991.

    41. [41]

      Hakamata W., Tamura S., Hirano T., Nishio T.. Multicolor imaging of endoplasmic reticulum-located esterase as a prodrug activation enzyme[J]. ACS Med. Chem. Lett., 2014,5:321-325. doi: 10.1021/ml400398t

    42. [42]

      Wu Y.L., Huang S.L., Zeng F.. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors[J]. Chem. Commun., 2015,51:12791-12794. doi: 10.1039/C5CC04771D

    43. [43]

      He L.W., Xu Q.Y., Liu Y.. Coumarin-based turn-on fluorescence probe for specific detection of glutathione over cysteine and homo-cysteine[J]. ACS Appl. Mater. Interfaces, 2015,7:12809-12813. doi: 10.1021/acsami.5b01934

  • 加载中
    1. [1]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    2. [2]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    3. [3]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    4. [4]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    5. [5]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    6. [6]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    7. [7]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    8. [8]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    9. [9]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    10. [10]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    11. [11]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    12. [12]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    13. [13]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    14. [14]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    15. [15]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    16. [16]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    17. [17]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    18. [18]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    19. [19]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    20. [20]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

Metrics
  • PDF Downloads(1)
  • Abstract views(827)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return