Citation: Wang Wei-Jia, Wang Yan, Xu Qian, Ju Huan-Xin, Wang Tao, Tao Zhi-Jie, Hu Shan-Wei, Zhu Jun-Fa. Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles[J]. Chinese Chemical Letters, ;2017, 28(8): 1760-1766. doi: 10.1016/j.cclet.2017.04.012 shu

Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles

  • Corresponding author: Zhu Jun-Fa, jfzhu@ustc.edu.cn; junfa_zhu@yahoo.com
  • Received Date: 30 January 2017
    Revised Date: 14 March 2017
    Accepted Date: 31 March 2017
    Available Online: 17 August 2017

Figures(5)

  • The interaction of Co with ceria thin films and its influence on the sintering behavior of Au were investigated by scanning tunneling microscopy (STM), synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The strong interaction between Co and CeO2(111) leads to oxidation of Co to Co2+ at 300 K, accompanied by partial reduction of ceria surface at low Co coverages. Subsequent Co deposition results in an increasing fraction of metallic Co. Annealing to high temperatures induces Co2+ ions diffuse into the CeO2 film, while the small metallic Co islands agglomerate into larger ones. The bimetallic Co-Au particles were prepared by deposition of Au on the existing Co particles on ceria surfaces. The sintering behavior of Co-Au bimetallic surfaces is found to be highly determined by the stoichiometry of ceria supports. The addition of Co to the Au/CeO2 surface suppresses the sintering of Au particles at high temperatures in comparison with that of pure Au particles. However, Au particles are less stable on the Co/CeO1.82 layer than on CeO1.82 surface.
  • 加载中
    1. [1]

      Trovarelli A.. Catalyticpropertiesof ceria and CeO2-containing materials[J]. Catal. Rev. Sci. Eng., 1996,38:439-520. doi: 10.1080/01614949608006464

    2. [2]

      Campbell C.T., Peden C.H.F.. Chemistry. Oxygenvacancies and catalysis on ceria surfaces[J]. Science, 2005,309:713-714. doi: 10.1126/science.1113955

    3. [3]

      Pozdnyakova-Tellinger O., Teschner D., Kroehnert J.. Surface waterassisted preferential CO oxidation on Pt/CeO2 catalyst[J]. J. Phys. Chem. C, 2007,111:5426-5431. doi: 10.1021/jp0669862

    4. [4]

      Hou T.F., Yu B., Zhang S.Y.. Hydrogen production from ethanol steam reforming over Rh/CeO2 catalyst[J]. Catal. Commun., 2015,58:137-140. doi: 10.1016/j.catcom.2014.09.020

    5. [5]

      Wieder N.L., Cargnello M., Bakhmutsky K.. Studyofthewater-gas-shiftreaction on Pd@CeO2/Al2O3 core-shell catalysts[J]. J. Phys. Chem. C, 2011,115:915-919. doi: 10.1021/jp102965e

    6. [6]

      Kaspar J., Fornasiero P., Graziani M.. Use of CeO2-based oxides in the three-way catalysis[J]. Catal. Today, 1999,50:285-298. doi: 10.1016/S0920-5861(98)00510-0

    7. [7]

      Vari G., Ovari L., Papp C.. The interaction of cobalt with CeO2(111) prepared on Cu(111)[J]. J. Phys. Chem. C, 2015,119:9324-9333. doi: 10.1021/acs.jpcc.5b00626

    8. [8]

      Conesa J.C., Martinez-Arias A., Fernandez-Garcia M.. Surface structure and redox chemistry of ceria-containing automotive catalytic systems[J]. Res. Chem. Intermed., 2000,26:103-111. doi: 10.1163/156856700X00138

    9. [9]

      Royer S., Duprez D.. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. Chemcatchem, 2011,3:24-65. doi: 10.1002/cctc.201000378

    10. [10]

      Martono E., Hyman M.P., Vohs J.M.. Reaction pathways for ethanol on model Co/ZnO(0001) catalysts[J]. PCCP, 2011,13:9880-9886. doi: 10.1039/c1cp20132h

    11. [11]

      Batista M.S., Santos R.K.S., Assaf E.M.. Characterization of the activityand stability of supported cobalt catalysts for the steam reforming of ethanol[J]. J. Power Sources, 2003,124:99-103. doi: 10.1016/S0378-7753(03)00599-8

    12. [12]

      Song H., Ozkan U.S.. The role of impregnation medium on the activity of ceriasupported cobalt catalysts for ethanol steam reforming[J]. J. Mol. Catal. A:Chem., 2010,318:21-29. doi: 10.1016/j.molcata.2009.11.003

    13. [13]

      Bayram B., Soykal I.I., von Deak D.. Ethanol steam reforming over Cobased catalysts:investigation of cobalt coordination environment under reaction conditions[J]. J. Catal., 2011,284:77-89. doi: 10.1016/j.jcat.2011.09.001

    14. [14]

      Shimura K., Miyazawa T., Hanaoka T.. Fischer-Tropschsynthesis over TiO2 supported cobalt catalyst:effect of TiO2 crystal phase and metal ion loading[J]. Appl. Catal. A:Gen., 2013,460:8-14.

    15. [15]

      Yu S.Y., Huang W.L., Ma Y.. Characterization of cobalt-based catalyst supported on CeO2 nanocubes for Fischer-Tropsch synthesis[J]. Integr. Ferroelectr., 2012,138:32-37. doi: 10.1080/10584587.2012.688425

    16. [16]

      Wang J., Shen M., Wang J.. CeO2-CoOx mixed oxides:structural characteristics and dynamic storage/release capacity[J]. Catal. Today, 2011,175:65-71. doi: 10.1016/j.cattod.2011.03.004

    17. [17]

      Li G., Wang Q., Zhao B.. Modification of Ce0.67Zr0.33O2 mixed oxides by coprecipitated/impregnated Co:effect on the surface and catalytic behavior of Pd only three-way catalyst[J]. J. Mol. Catal. A:Chem., 2010,326:69-74. doi: 10.1016/j.molcata.2010.04.008

    18. [18]

      Liotta L.F., Di Carlo G., Pantaleo G.. Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2-ZrO2 compositeoxides for methane combustion:influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture[J]. Appl. Catal. B:Environ., 2007,70:314-322. doi: 10.1016/j.apcatb.2005.12.023

    19. [19]

      Zou Z.Q., Meng M., Li Q.. Surfactants-assisted synthesis and characterizations of multicomponent mesoporous materials Co-Ce-Zr-O and Pd/Co-Ce-Zr-O used for low-temperature CO oxidation[J]. Mater. Chem. Phys., 2008,109:373-380. doi: 10.1016/j.matchemphys.2007.12.004

    20. [20]

      Luo J.Y., Meng M., Yao J.S.. One-step synthesis of nanostructured Pddoped mixed oxides MOx-CeO2(M=Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation[J]. Appl. Catal. B:Environ., 2009,87:92-103. doi: 10.1016/j.apcatb.2008.08.017

    21. [21]

      Camellone M.F., Fabris S.. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts:activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms[J]. J. Am. Chem. Soc., 2009,131:10473-10483. doi: 10.1021/ja902109k

    22. [22]

      Baron M., Bondarchuk O., Stacchiola D.. Interaction of gold with cerium oxide supports:CeO2(111) thin films vs CeOx nanoparticles[J]. J. Phys. Chem. C, 2009,113:6042-6049. doi: 10.1021/jp9001753

    23. [23]

      Fu Q., Saltsburg H., Flytzani-Stephanopoulos M.. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003,301:935-938. doi: 10.1126/science.1085721

    24. [24]

      Ilieva L., Pantaleo G., Nedyalkova R.. NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+(Me=Al orlanthanides):effectof waterin the feed gas[J]. Appl. Catal. B:Environ., 2009,90:286-294. doi: 10.1016/j.apcatb.2009.03.021

    25. [25]

      Galhenage R.P., Ammal S.C., Yan H.. Nucleation, growth, and adsorbateinduced changes in composition for Co-Au bimetallic clusters on TiO2[J]. J. Phys. Chem. C, 2012,116:24616-24629. doi: 10.1021/jp307888p

    26. [26]

      Reina T.R., Moreno A.A., Ivanova S.. Influence of vanadium or cobalt oxides on the CO oxidation behavior of Au/MOx/CeO2-Al2O3 systems[J]. Chemcatchem, 2012,4:512-520. doi: 10.1002/cctc.v4.4

    27. [27]

      Gamboa-Rosales N.K., Ayastuy J.L., Boukha Z.. Ceria-supported Au-CuO and Au-Co3O4 catalysts for CO oxidation:an 18O/16O isotopic exchange study[J]. Appl. Catal. B:Environ., 2015,168-169:87-97. doi: 10.1016/j.apcatb.2014.12.020

    28. [28]

      Wang H., Zhu H., Qin Z.. Deactivation of a Au/CeO2-Co3O4 catalyst during CO preferential oxidation in H2-rich stream[J]. J. Catal., 2009,264:154-162. doi: 10.1016/j.jcat.2009.04.003

    29. [29]

      Gamboa-Rosales N.K., Ayastuy J.L., Iglesias-González A.. Oxygenenhanced WGS over ceria-supported Au-Co3O4 bimetallic catalysts[J]. Chem. Eng. J., 2012,207-208:49-56. doi: 10.1016/j.cej.2012.06.142

    30. [30]

      Ilieva L., Petrova P., Tabakova T.. Gold catalysts on ceria doped with MeOx (Me=Fe, Mn, Co and Sn) for complete benzene oxidation:effect of composition and structure of the mixed supports[J]. React. Kinet. Mech. Catal., 2012,105:23-37. doi: 10.1007/s11144-011-0368-2

    31. [31]

      Ilieva L., Petrova P., Tabakova T.. Relationship between structural properties and activity in complete benzene oxidation over Au/CeO2-CoOx catalysts[J]. Catal. Today, 2012,187:30-38. doi: 10.1016/j.cattod.2012.03.006

    32. [32]

      Romeo M., Bak K., Elfallah J.. XPS study of the reduction of cerium dioxide[J]. Surf. Interface Anal., 1993,20:508-512. doi: 10.1002/(ISSN)1096-9918

    33. [33]

      Mullins D.R., Radulovic P.V., Overbury S.H.. Ordered cerium oxide thin films grown on Ru(0001) and Ni(111)[J]. Surf. Sci., 1999,429:186-198. doi: 10.1016/S0039-6028(99)00369-6

    34. [34]

      Kong D.D., Wang G.D., Pan Y.H.. Growth, structure, and stability of Ag on CeO2(111):synchrotron radiation photoemission studies[J]. J. Phys. Chem. C, 2011,115:6715-6725. doi: 10.1021/jp112392y

    35. [35]

      Nilekar A.U., Xu Y., Zhang J.. Bimetallic and ternary alloys for improved oxygen reduction catalysis[J]. Top. Catal., 2007,46:276-284. doi: 10.1007/s11244-007-9001-z

    36. [36]

      Banik S., Barman S., Rai S.K.. Electronic structure of buried Co-Cu interface studied with photoemission spectroscopy[J]. J. Appl. Phys., 2012,1125.

    37. [37]

      Óvári L., Krick Calderon S., Lykhach Y.. Near ambient pressure XPS investigation of the interaction of ethanol with Co/CeO2(111)[J]. J. Catal., 2013,307:132-139. doi: 10.1016/j.jcat.2013.07.015

    38. [38]

      Hyman M.P., Vohs J.M.. Reaction of ethanol on oxidized and metallic cobalt surfaces[J]. Surf. Sci., 2011,605:383-389. doi: 10.1016/j.susc.2010.11.005

    39. [39]

      Martono E., Vohs J.M.. Supporteffects in cobalt-based ethanol steamreforming catalysts:reaction of ethanol on Co/CeO2/YSZ(100) model catalysts[J]. J. Catal., 2012,291:79-86. doi: 10.1016/j.jcat.2012.04.010

    40. [40]

      Lin S.S.Y., Kim D.H., Engelhard M.H.. Water-induced formation of cobalt oxides over supported cobalt/ceria-zirconia catalysts under ethanol-steam conditions[J]. J. Catal., 2010,273:229-235. doi: 10.1016/j.jcat.2010.05.016

    41. [41]

      Skriver H.L., Rosengaard N.M.. Surface-energy and work fuction of elemental metals[J]. Phys. Rev. B, 1992,46:7157-7168. doi: 10.1103/PhysRevB.46.7157

    42. [42]

      Zhou G.L., Yang M.H., Flynn C.P.. Epitaxial growth of metastable Co-Cu alloys by a surface pump mechanism[J]. Phys. Rev. Lett., 1996,77:4580-4583. doi: 10.1103/PhysRevLett.77.4580

    43. [43]

      Zhou Y.H., Peterson E.W., Zhou J.. Growth and structure of Ni-Au bimetallic particles on reducible CeO2(111)[J]. Top. Catal., 2015,58:134-142. doi: 10.1007/s11244-014-0352-y

    44. [44]

      Galhenage R.P., Yan H., Ahsen A.S.. Understanding the growth and chemical activity of Co-Pt bimetallic clusters on TiO2(110):CO adsorption and methanol reaction[J]. J. Phys. Chem. C, 2014,118:17773-17786. doi: 10.1021/jp505003s

    45. [45]

      Xu Q., Hu S.W., Cheng D.L.. Growth and electronic structure of Sm on thin Al2O3/Ni3Al(111) films[J]. J. Chem. Phys., 2012,136.

    46. [46]

      Wang W.J., Hu S.W., Han Y.. Interaction of Zr with oxidized and partially reduced ceria thin films[J]. Surf. Sci., 2016,653:205-210. doi: 10.1016/j.susc.2016.07.007

    47. [47]

      Hu S.W., Wang Y., Wang W.J.. Ag nanoparticles on reducible CeO2(111) thin films:effect of thickness and stoichiometry of ceria[J]. J. Phys. Chem. C, 2015,119:3579-3588. doi: 10.1021/jp511691p

    48. [48]

      Horcas I., Fernandez R., Gomez-Rodriguez J.M.. WSXM:A software for scanning probemicroscopyand a toolfor nanotechnology[J]. Rev. Sci. Instrum., 2007,78013705. doi: 10.1063/1.2432410

  • 加载中
    1. [1]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    2. [2]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    3. [3]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    4. [4]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    5. [5]

      Qi HuangJun LiaoJingjing LiZhengyan GuXinkang ZhangMingxue SunWenqi MengGuanchao MaoZhipeng PeiShanshan ZhangSongling LiChuan ZhangYunqin WangJihao LiuTingbin ShuMin TaoYing LuKai XiaoQingqiang XuJincai Lu . Curcumin-loaded ceria nanoenzymes for dual-action suppression of inflammation and alleviation of oxidative damage in the treatment of acute lung injury. Chinese Chemical Letters, 2025, 36(4): 109914-. doi: 10.1016/j.cclet.2024.109914

    6. [6]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    7. [7]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    8. [8]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    9. [9]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    10. [10]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    11. [11]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    12. [12]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    13. [13]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    14. [14]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    15. [15]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    16. [16]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    17. [17]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    18. [18]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    19. [19]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    20. [20]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

Metrics
  • PDF Downloads(6)
  • Abstract views(825)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return