Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles
- Corresponding author: Zhu Jun-Fa, jfzhu@ustc.edu.cn; junfa_zhu@yahoo.com
Citation:
Wang Wei-Jia, Wang Yan, Xu Qian, Ju Huan-Xin, Wang Tao, Tao Zhi-Jie, Hu Shan-Wei, Zhu Jun-Fa. Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles[J]. Chinese Chemical Letters,
;2017, 28(8): 1760-1766.
doi:
10.1016/j.cclet.2017.04.012
Trovarelli A.. Catalyticpropertiesof ceria and CeO2-containing materials[J]. Catal. Rev. Sci. Eng., 1996,38:439-520. doi: 10.1080/01614949608006464
Campbell C.T., Peden C.H.F.. Chemistry. Oxygenvacancies and catalysis on ceria surfaces[J]. Science, 2005,309:713-714. doi: 10.1126/science.1113955
Pozdnyakova-Tellinger O., Teschner D., Kroehnert J.. Surface waterassisted preferential CO oxidation on Pt/CeO2 catalyst[J]. J. Phys. Chem. C, 2007,111:5426-5431. doi: 10.1021/jp0669862
Hou T.F., Yu B., Zhang S.Y.. Hydrogen production from ethanol steam reforming over Rh/CeO2 catalyst[J]. Catal. Commun., 2015,58:137-140. doi: 10.1016/j.catcom.2014.09.020
Wieder N.L., Cargnello M., Bakhmutsky K.. Studyofthewater-gas-shiftreaction on Pd@CeO2/Al2O3 core-shell catalysts[J]. J. Phys. Chem. C, 2011,115:915-919. doi: 10.1021/jp102965e
Kaspar J., Fornasiero P., Graziani M.. Use of CeO2-based oxides in the three-way catalysis[J]. Catal. Today, 1999,50:285-298. doi: 10.1016/S0920-5861(98)00510-0
Vari G., Ovari L., Papp C.. The interaction of cobalt with CeO2(111) prepared on Cu(111)[J]. J. Phys. Chem. C, 2015,119:9324-9333. doi: 10.1021/acs.jpcc.5b00626
Conesa J.C., Martinez-Arias A., Fernandez-Garcia M.. Surface structure and redox chemistry of ceria-containing automotive catalytic systems[J]. Res. Chem. Intermed., 2000,26:103-111. doi: 10.1163/156856700X00138
Royer S., Duprez D.. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. Chemcatchem, 2011,3:24-65. doi: 10.1002/cctc.201000378
Martono E., Hyman M.P., Vohs J.M.. Reaction pathways for ethanol on model Co/ZnO(0001) catalysts[J]. PCCP, 2011,13:9880-9886. doi: 10.1039/c1cp20132h
Batista M.S., Santos R.K.S., Assaf E.M.. Characterization of the activityand stability of supported cobalt catalysts for the steam reforming of ethanol[J]. J. Power Sources, 2003,124:99-103. doi: 10.1016/S0378-7753(03)00599-8
Song H., Ozkan U.S.. The role of impregnation medium on the activity of ceriasupported cobalt catalysts for ethanol steam reforming[J]. J. Mol. Catal. A:Chem., 2010,318:21-29. doi: 10.1016/j.molcata.2009.11.003
Bayram B., Soykal I.I., von Deak D.. Ethanol steam reforming over Cobased catalysts:investigation of cobalt coordination environment under reaction conditions[J]. J. Catal., 2011,284:77-89. doi: 10.1016/j.jcat.2011.09.001
Shimura K., Miyazawa T., Hanaoka T.. Fischer-Tropschsynthesis over TiO2 supported cobalt catalyst:effect of TiO2 crystal phase and metal ion loading[J]. Appl. Catal. A:Gen., 2013,460:8-14.
Yu S.Y., Huang W.L., Ma Y.. Characterization of cobalt-based catalyst supported on CeO2 nanocubes for Fischer-Tropsch synthesis[J]. Integr. Ferroelectr., 2012,138:32-37. doi: 10.1080/10584587.2012.688425
Wang J., Shen M., Wang J.. CeO2-CoOx mixed oxides:structural characteristics and dynamic storage/release capacity[J]. Catal. Today, 2011,175:65-71. doi: 10.1016/j.cattod.2011.03.004
Li G., Wang Q., Zhao B.. Modification of Ce0.67Zr0.33O2 mixed oxides by coprecipitated/impregnated Co:effect on the surface and catalytic behavior of Pd only three-way catalyst[J]. J. Mol. Catal. A:Chem., 2010,326:69-74. doi: 10.1016/j.molcata.2010.04.008
Liotta L.F., Di Carlo G., Pantaleo G.. Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2-ZrO2 compositeoxides for methane combustion:influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture[J]. Appl. Catal. B:Environ., 2007,70:314-322. doi: 10.1016/j.apcatb.2005.12.023
Zou Z.Q., Meng M., Li Q.. Surfactants-assisted synthesis and characterizations of multicomponent mesoporous materials Co-Ce-Zr-O and Pd/Co-Ce-Zr-O used for low-temperature CO oxidation[J]. Mater. Chem. Phys., 2008,109:373-380. doi: 10.1016/j.matchemphys.2007.12.004
Luo J.Y., Meng M., Yao J.S.. One-step synthesis of nanostructured Pddoped mixed oxides MOx-CeO2(M=Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation[J]. Appl. Catal. B:Environ., 2009,87:92-103. doi: 10.1016/j.apcatb.2008.08.017
Camellone M.F., Fabris S.. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts:activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms[J]. J. Am. Chem. Soc., 2009,131:10473-10483. doi: 10.1021/ja902109k
Baron M., Bondarchuk O., Stacchiola D.. Interaction of gold with cerium oxide supports:CeO2(111) thin films vs CeOx nanoparticles[J]. J. Phys. Chem. C, 2009,113:6042-6049. doi: 10.1021/jp9001753
Fu Q., Saltsburg H., Flytzani-Stephanopoulos M.. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003,301:935-938. doi: 10.1126/science.1085721
Ilieva L., Pantaleo G., Nedyalkova R.. NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+(Me=Al orlanthanides):effectof waterin the feed gas[J]. Appl. Catal. B:Environ., 2009,90:286-294. doi: 10.1016/j.apcatb.2009.03.021
Galhenage R.P., Ammal S.C., Yan H.. Nucleation, growth, and adsorbateinduced changes in composition for Co-Au bimetallic clusters on TiO2[J]. J. Phys. Chem. C, 2012,116:24616-24629. doi: 10.1021/jp307888p
Reina T.R., Moreno A.A., Ivanova S.. Influence of vanadium or cobalt oxides on the CO oxidation behavior of Au/MOx/CeO2-Al2O3 systems[J]. Chemcatchem, 2012,4:512-520. doi: 10.1002/cctc.v4.4
Gamboa-Rosales N.K., Ayastuy J.L., Boukha Z.. Ceria-supported Au-CuO and Au-Co3O4 catalysts for CO oxidation:an 18O/16O isotopic exchange study[J]. Appl. Catal. B:Environ., 2015,168-169:87-97. doi: 10.1016/j.apcatb.2014.12.020
Wang H., Zhu H., Qin Z.. Deactivation of a Au/CeO2-Co3O4 catalyst during CO preferential oxidation in H2-rich stream[J]. J. Catal., 2009,264:154-162. doi: 10.1016/j.jcat.2009.04.003
Gamboa-Rosales N.K., Ayastuy J.L., Iglesias-González A.. Oxygenenhanced WGS over ceria-supported Au-Co3O4 bimetallic catalysts[J]. Chem. Eng. J., 2012,207-208:49-56. doi: 10.1016/j.cej.2012.06.142
Ilieva L., Petrova P., Tabakova T.. Gold catalysts on ceria doped with MeOx (Me=Fe, Mn, Co and Sn) for complete benzene oxidation:effect of composition and structure of the mixed supports[J]. React. Kinet. Mech. Catal., 2012,105:23-37. doi: 10.1007/s11144-011-0368-2
Ilieva L., Petrova P., Tabakova T.. Relationship between structural properties and activity in complete benzene oxidation over Au/CeO2-CoOx catalysts[J]. Catal. Today, 2012,187:30-38. doi: 10.1016/j.cattod.2012.03.006
Romeo M., Bak K., Elfallah J.. XPS study of the reduction of cerium dioxide[J]. Surf. Interface Anal., 1993,20:508-512. doi: 10.1002/(ISSN)1096-9918
Mullins D.R., Radulovic P.V., Overbury S.H.. Ordered cerium oxide thin films grown on Ru(0001) and Ni(111)[J]. Surf. Sci., 1999,429:186-198. doi: 10.1016/S0039-6028(99)00369-6
Kong D.D., Wang G.D., Pan Y.H.. Growth, structure, and stability of Ag on CeO2(111):synchrotron radiation photoemission studies[J]. J. Phys. Chem. C, 2011,115:6715-6725. doi: 10.1021/jp112392y
Nilekar A.U., Xu Y., Zhang J.. Bimetallic and ternary alloys for improved oxygen reduction catalysis[J]. Top. Catal., 2007,46:276-284. doi: 10.1007/s11244-007-9001-z
Banik S., Barman S., Rai S.K.. Electronic structure of buried Co-Cu interface studied with photoemission spectroscopy[J]. J. Appl. Phys., 2012,1125.
Óvári L., Krick Calderon S., Lykhach Y.. Near ambient pressure XPS investigation of the interaction of ethanol with Co/CeO2(111)[J]. J. Catal., 2013,307:132-139. doi: 10.1016/j.jcat.2013.07.015
Hyman M.P., Vohs J.M.. Reaction of ethanol on oxidized and metallic cobalt surfaces[J]. Surf. Sci., 2011,605:383-389. doi: 10.1016/j.susc.2010.11.005
Martono E., Vohs J.M.. Supporteffects in cobalt-based ethanol steamreforming catalysts:reaction of ethanol on Co/CeO2/YSZ(100) model catalysts[J]. J. Catal., 2012,291:79-86. doi: 10.1016/j.jcat.2012.04.010
Lin S.S.Y., Kim D.H., Engelhard M.H.. Water-induced formation of cobalt oxides over supported cobalt/ceria-zirconia catalysts under ethanol-steam conditions[J]. J. Catal., 2010,273:229-235. doi: 10.1016/j.jcat.2010.05.016
Skriver H.L., Rosengaard N.M.. Surface-energy and work fuction of elemental metals[J]. Phys. Rev. B, 1992,46:7157-7168. doi: 10.1103/PhysRevB.46.7157
Zhou G.L., Yang M.H., Flynn C.P.. Epitaxial growth of metastable Co-Cu alloys by a surface pump mechanism[J]. Phys. Rev. Lett., 1996,77:4580-4583. doi: 10.1103/PhysRevLett.77.4580
Zhou Y.H., Peterson E.W., Zhou J.. Growth and structure of Ni-Au bimetallic particles on reducible CeO2(111)[J]. Top. Catal., 2015,58:134-142. doi: 10.1007/s11244-014-0352-y
Galhenage R.P., Yan H., Ahsen A.S.. Understanding the growth and chemical activity of Co-Pt bimetallic clusters on TiO2(110):CO adsorption and methanol reaction[J]. J. Phys. Chem. C, 2014,118:17773-17786. doi: 10.1021/jp505003s
Xu Q., Hu S.W., Cheng D.L.. Growth and electronic structure of Sm on thin Al2O3/Ni3Al(111) films[J]. J. Chem. Phys., 2012,136.
Wang W.J., Hu S.W., Han Y.. Interaction of Zr with oxidized and partially reduced ceria thin films[J]. Surf. Sci., 2016,653:205-210. doi: 10.1016/j.susc.2016.07.007
Hu S.W., Wang Y., Wang W.J.. Ag nanoparticles on reducible CeO2(111) thin films:effect of thickness and stoichiometry of ceria[J]. J. Phys. Chem. C, 2015,119:3579-3588. doi: 10.1021/jp511691p
Horcas I., Fernandez R., Gomez-Rodriguez J.M.. WSXM:A software for scanning probemicroscopyand a toolfor nanotechnology[J]. Rev. Sci. Instrum., 2007,78013705. doi: 10.1063/1.2432410
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
Qi Huang , Jun Liao , Jingjing Li , Zhengyan Gu , Xinkang Zhang , Mingxue Sun , Wenqi Meng , Guanchao Mao , Zhipeng Pei , Shanshan Zhang , Songling Li , Chuan Zhang , Yunqin Wang , Jihao Liu , Tingbin Shu , Min Tao , Ying Lu , Kai Xiao , Qingqiang Xu , Jincai Lu . Curcumin-loaded ceria nanoenzymes for dual-action suppression of inflammation and alleviation of oxidative damage in the treatment of acute lung injury. Chinese Chemical Letters, 2025, 36(4): 109914-. doi: 10.1016/j.cclet.2024.109914
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
Yunxia Liu , Guandong Wu , Lin Li , Yiming Niu , Bingsen Zhang , Botao Qiao , Junhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
Xiangdong Lai , Tengfei Liu , Zengchao Guo , Yihan Wang , Jiang Xiao , Qingxiu Xia , Xiaohui Liu , Hui Jiang , Xuemei Wang . In situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864