Citation: Zhang Ben-Hou, Kong Jing-Jing, Huang Yang, Lou Yue-Guang, Li Xiao-Fei, He Chun-Yang. Benign perfluoroalkylation of uracils and uracil nucleosides via visible light-induced photoredox catalysis[J]. Chinese Chemical Letters, ;2017, 28(8): 1751-1754. doi: 10.1016/j.cclet.2017.03.039 shu

Benign perfluoroalkylation of uracils and uracil nucleosides via visible light-induced photoredox catalysis

  • Corresponding author: Li Xiao-Fei, lixiaofei@zmu.edu.cn He Chun-Yang, hechy2002@163.com
  • 1 Both authors contributed equally to this work
  • Received Date: 21 January 2017
    Revised Date: 28 February 2017
    Accepted Date: 22 March 2017
    Available Online: 9 August 2017

Figures(4)

  • In this work, an efficient and facile method for the preparation of 5-perfluoroalkylated uracils and uracil nucleosides through visible-light-mediated reaction has been developed. The reaction processes in high efficiency under mild reaction conditions and show broad substrate scope by employing commercial available perfluoroalkyl sources, thus demonstrates high potent application in life and medicinal science.
  • 加载中
    1. [1]

      Agrofoglio L.A., Gillaizeau I., Saito Y.. Palladium-assisted routes to nucleosides[J]. Chem. Rev., 2003,103:1875-1916. doi: 10.1021/cr010374q

    2. [2]

      De Clercq E., Descamps J., De Somer P.. (E)-5-(2-Bromovinyl)-2'-deoxyuridine:a potent and selective anti-herpes agent[J]. Proc. Natl. Acad. Sci. U. S. A., 1979,76:2947-2951. doi: 10.1073/pnas.76.6.2947

    3. [3]

      McGuigan C., Barucki H., Blewett S.. Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain[J]. J. Med. Chem., 2000,43:4993-4997. doi: 10.1021/jm000210m

    4. [4]

      Heidenreich J.O., Pieken W., Eckstein F.. Chemically modified RNA:approaches and applications[J]. FASEBJournal, 1993,7:90-96.

    5. [5]

      Pallan J.P.S., Greene E.M., Jicman P.A.. Unexpected origins of the enhanced pairing affinity of 2'-fluoro-modified RNA[J]. Nucleic Acids Res., 2011,39:3482-3495. doi: 10.1093/nar/gkq1270

    6. [6]

      Košutić M., Jud L., Da Veiga C.. Surprising base pairing and structural properties of 2'-trifluoromethylthio-modified ribonucleic acids[J]. J. Am. Chem. Soc., 2014,136:6656-6663. doi: 10.1021/ja5005637

    7. [7]

      R.D. Chambers, Fluorine in Organic Chemistry, 2th ed, Blackwell, London, 2004.

    8. [8]

      P. Kirsh, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004.

    9. [9]

      J.T. Welch, S. Eswarakrishnan, Fluorine inbioorganic Chemistry, Wiley, New York, 1991.

    10. [10]

      Metterle L., Nelson C., Patel N.. Intralesional 5-fluorouracil (FU) as a treatment for nonmelanoma skin cancer (NMSC):A review[J]. J. Am. Acad.of Dermatol., 2015,74:552-557.

    11. [11]

      Carrillo E., Navarro S.A., Ramirez A.. 5-Fluorouracil derivatives:a patent review (2012-2014)[J]. Expert. Opin. Ther. Pat., 2015,25:1131-1144. doi: 10.1517/13543776.2015.1056736

    12. [12]

      Palasz A., Ciez D.. The driving force:digital servo drive doubles accuracy of high-speed cut-to-length machines[J]. Eur. J. Med. Chem., 2015,46:582-611.  

    13. [13]

      Lenz H.J., Stintzing S., Loupakis F.. TAS-102, a novel antitumor agent:A review of the mechanism of action[J]. Cancer Treat. Rev., 2015,41:777-783. doi: 10.1016/j.ctrv.2015.06.001

    14. [14]

      De Clercq E.. Selective anti-herpesvirus agents[J]. Antivir. Chem. Chemoth., 2013,23:93-101. doi: 10.3851/IMP2533

    15. [15]

      Caillot G., Dufour J., Belhomme M.C.. Copper-catalyzed olefinic C-H difluoroacetylation of enamides[J]. Chem. Commun., 2014,50:5887-5890. doi: 10.1039/C4CC01994F

    16. [16]

      Sladojevich F., McNeill E., Boergel J., Zheng S.L., Ritter T.. Condensed-phase, halogen-bonded CF3I and C2F5I adducts for perfluoroalkylation reactions[J]. Angew. Chem. Int. Ed., 2015,54:3712-3716. doi: 10.1002/anie.201410954

    17. [17]

      Ivanova M., Bayle A., Besset T., Poisson T., Pannecoucke X.. Copper saltcontrolled divergent reactivity of[J]. Angew. Chem. Int. Ed., 2016,55:14141-14145. doi: 10.1002/anie.v55.45

    18. [18]

      Aikawa K., Nakamura Y., Yokota Y., Toya W., Mikami K.. Stable but reactive perfluoroalkylzinc reagents:application in ligand-free copper-catalyzed perfluoroalkylation of aryl iodides[J]. Chem. Eur. J., 2015,21:96-100. doi: 10.1002/chem.201405677

    19. [19]

      Zhao Y., Zhao B., Liu J.. Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light[J]. Angew. Chem. Int. Ed, 2016,55:4215-4219. doi: 10.1002/anie.201511334

    20. [20]

      Yu H., Shi R., Zhao Y.. Smart utilization of carbon dots in semiconductor photocatalysis[J]. Adv. Mater., 2016,28:9454-9477. doi: 10.1002/adma.201602581

    21. [21]

      Zhao Y., Jia X., Waterhouse G.I.N.. Layered double hydroxide nanostructured photocatalysts for renewable energy production[J]. Adv. Energy. Mater., 2016,6. doi: 10.1002/aenm.201501974

    22. [22]

      Zhao Y., Chen G., Bian T.. Defect-rich ultrathinznal-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water[J]. Adv. Mater., 2015,27:7824-7831. doi: 10.1002/adma.201503730

    23. [23]

      Min Q.Q., Yin Z., Feng Z., Guo W.H., Zhang X.. Highly selective gemdifluoroallylation of organoborons with bromodifluoromethylated alkenes catalyzed by palladium[J]. J. Am. Chem. Soc., 2014,136:1230-1233. doi: 10.1021/ja4114825

    24. [24]

      Feng Z., Min Q.Q., Zhao H.Y., Gu J.W., Zhang X.. A general synthesis of fluoroalkylated alkenes by palladium-catalyzed heck-type reaction of fluoroalkyl bromides[J]. Angew. Chem. Int. Ed., 2015,54:1270-1274. doi: 10.1002/anie.201409617

    25. [25]

      Ge S., Chaladaj W., Hartwig J.F.. Pd-Catalyzed(-arylation of (, (-difluoroketones with aryl bromides and chlorides A route to difluoromethylarenes[J]. J. Am. Chem. Soc., 2014,136:4149-4152. doi: 10.1021/ja501117v

    26. [26]

      Guo C., Wang R.W., Qing F.L.. Palladium catalyzed direct(-arylation of (, (-difluoroketones with aryl bromides[J]. J. Fluorine Chem., 2013,44:135-142.

    27. [27]

      Feng Z., Chen F., Zhang X.. Copper catalyzed cross-coupling of iodobenzoates with bromozincdifluorophosphonate[J]. Org. Lett., 2012,14:1938-1941. doi: 10.1021/ol3006425

    28. [28]

      Chatterjee T., Iqbal N., You Y., Cho E.J.. Controlled fluoroalkylation reactions by visible-light photoredox catalysis[J]. Acc. Chem. Res., 2016,49:2284-2294. doi: 10.1021/acs.accounts.6b00248

    29. [29]

      Tang X.J., Dolbier W.R.. Efficient Cu-catalyzed atom transfer radical addition (ATRA) reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light[J]. Angew. Chem. Int. Ed., 2015,54:4246-4249. doi: 10.1002/anie.201412199

    30. [30]

      Li W., Zhu X., Mao H.. Visible-light-induced direct C(sp3)-H difluromethylation of tetrahydroisoquinolines with the in situ generated difluoroenolates[J]. Chem. Commun., 2014,50:7521-7523. doi: 10.1039/C4CC02768J

    31. [31]

      Su Y.M., Hou Y., Yin F.. VisibleLight-Mediated C-H difluoromethylation of electron-rich heteroarenes[J]. Org. Lett., 2014,16:2958-2961. doi: 10.1021/ol501094z

    32. [32]

      Lin Q., Chu L., Qing F.. Direct introduction of ethoxycarbonyldifluoromethyl-Group to heteroarenes with ethyl bromodifluoroacetate via visible-Light photocatalysis[J]. Chin. J. Chem., 2013,45:885-891.

    33. [33]

      Nguyen J.D., Tucker J.W., Konieczynska M.D., Stephenson C.R.J.. Intermolecular Atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts[J]. J. Am. Chem. Soc., 2011,133:4160-4163. doi: 10.1021/ja108560e

    34. [34]

      He C.Y., Kong J., Li X.. Visible-Light-Induced direct difluoroalkylation of uracils, pyridinones and coumarins[J]. J. Org. Chem., 2017,82:910-917. doi: 10.1021/acs.joc.6b02316

  • 加载中
    1. [1]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    2. [2]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    3. [3]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    4. [4]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    5. [5]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    6. [6]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    7. [7]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    8. [8]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    9. [9]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    10. [10]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    11. [11]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    12. [12]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    13. [13]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    14. [14]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    15. [15]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    16. [16]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    17. [17]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    18. [18]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    19. [19]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(3)
  • Abstract views(684)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return