Electrochemical properties of niobium and phosphate doped spherical Li-rich spinel LiMn2O4 synthesized by ion implantation method
- Corresponding author: Li Wei, liweimgl@163.com
Citation:
Li Wei, Siqin Gao-Wa, Zhu Zhi, Qi Lu, Tian Wen-Huai. Electrochemical properties of niobium and phosphate doped spherical Li-rich spinel LiMn2O4 synthesized by ion implantation method[J]. Chinese Chemical Letters,
;2017, 28(7): 1438-1446.
doi:
10.1016/j.cclet.2017.03.035
Nitta N., Wu F.X., Lee J.T.. Li-ion battery materials: present and future[J]. Mater. Today, 2015,18:252-264. doi: 10.1016/j.mattod.2014.10.040
Xu G.J., Liu Z.H., Zhang C.J.. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures[J]. J. Mater. Chem. A, 2015,3:4092-4123. doi: 10.1039/C4TA06264G
Martinez S., Sobrados I., Tonti D.. Chemical vs. electrochemical extraction of lithium from the Li-excess Li1.10Mn1.90O4 spinel followed by NMR and DRX techniques[J]. Phys. Chem. Chem. Phys., 2016,16:3282-3291.
Deng Y.F., Zhao S.X., Hu D.H.. Structure and electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 coated with Li-La-Zr-O solid electrolyte[J]. J. Solid State Electrochem., 2014,18:249-255. doi: 10.1007/s10008-013-2265-2
Zhu Z., Zhang D., Yan H.. Precise preparation of high performance spherical hierarchical LiNi0.5Mn1.5O4 for 5 V lithium ion secondary batteries[J]. J. Mater. Chem. A, 2013,1:5492-5496. doi: 10.1039/c3ta10980a
Nakamura T., Kajiyama A.. Synthesis of Li-Mn spinel oxide using Mn2O3 particles[J]. Solid State Ionics, 1999,124:45-52. doi: 10.1016/S0167-2738(99)00214-3
Liu W., Kowal K., Farrington G.C.. Electrochemical characteristics of spinel phase LiMn2O4-based cathode materials prepared by the pechini process[J]. J. Electrochem. Soc., 1996,143:3590-3596. doi: 10.1149/1.1837257
Fu L.J., Liu H., Li C.. Electrode materials for lithium secondary batteries prepared by sol-gel methods[J]. Prog. Mater. Sci., 2005,50:881-928. doi: 10.1016/j.pmatsci.2005.04.002
Kanasaku T., Amezawa K., Yamamoto N.. Hydrothermal synthesis and electrochemical properties of Li-Mn-spinel[J]. Solid State Ionics, 2000,133:51-56. doi: 10.1016/S0167-2738(00)00734-7
Cui Y.L., Bao W.J., Yuan Z.. Comparison of different soft chemical routes synthesis of submicro-LiMn2O4 and their influence on its electrochemical properties[J]. J. Solid State Electrochem., 2012,16:1551-1559. doi: 10.1007/s10008-011-1558-6
Zhu C.Y., Saito G., Akiyama T.. A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries[J]. J. Mater. Chem. A, 2013,1:7077-7082. doi: 10.1039/c3ta11066d
Zhu Z., Qi L., Zhang D.. Preparation of spherical hierarchical LiNi0.5Mn1.5O4 with high electrochemical performances by a novel composite co-precipitation method for 5 V lithium ion secondary batteries[J]. Electrochim. Acta, 2015,115:290-296.
Cai Y.J., Huang Y.D., Wang X.C.. Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life[J]. J. Power Sources, 2015,278:574-581. doi: 10.1016/j.jpowsour.2014.12.082
Ding X.N., Zhou H.W., Liu G.C.. Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method[J]. J. Alloys Compd., 2015,632:147-151. doi: 10.1016/j.jallcom.2015.01.163
Hirose S., Kodera T., Ogihara T.. Synthesis and electrochemical properties of Lirich spinel type LiMn2O4 powders by spray pyrolysis using aqueous solution of manganese carbonate[J]. J. Alloys Compd., 2010,506:883-887. doi: 10.1016/j.jallcom.2010.07.104
Zhang Q.T., Mei J.T., Wang X.M.. Facile synthesis of spherical spinel LiMn2O4 nanoparticles via solution combustion synthesis by controlling calcinating temperature[J]. J. Alloys Compd., 2014,617:326-331. doi: 10.1016/j.jallcom.2014.08.003
Putra T.Y.S.P., Yonemura M., Torii S.. Structure and electrochemical performance of the spinel-LiMn2O4 synthesized by mechanical alloying[J]. Solid State Ionics, 2014,262:83-87. doi: 10.1016/j.ssi.2013.10.049
Saitoh M., Sano M., Fujita M.. Studies of capacity losses in cycles and storages for a Li1.1Mn1.9O4 positive electrode[J]. J. Electrochem. Soc., 2004,151:A17-A22. doi: 10.1149/1.1630038
Talik E., Lipińska L., Zajdel P.. Electronic structure and magnetic properties of LiMn1.5M0.5O4(M=Al, Mg, Ni, Fe) and LiMn2O4/TiO2 nanocrystalline electrode materials[J]. J. Solid State Chem., 2013,206:257-264. doi: 10.1016/j.jssc.2013.08.006
Luo Q., Manthiram A.. Effect of low-temperature fluorine doping on the properties of spinel LiMn2-2yLiyMyO4-ηFη (M=Fe, Co, and Zn) cathodes[J]. J. Electrochem. Soc., 2009,156:A84-A88. doi: 10.1149/1.3028317
Liu Y., Fujiwara T., Yukawa H.. Lithium intercalation and alloying efects on electronic structures of spinel lithium manganese oxides[J]. Solar Energy Mater. Solar Cells, 2000,62:81-87. doi: 10.1016/S0927-0248(99)00138-5
Sun H.B., Chen Y.G., Xu C.H.. Electrochemical performance of rare-earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery[J]. J. Solid State Electrochem., 2012,16:1247-1254. doi: 10.1007/s10008-011-1514-5
Iturrondobeitia A., Go A., Palomares V.. Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(Ⅳ) versus with a trivalent species such as Ga(Ⅲ). Electrochemical, magnetic and ESR study[J]. J. Power Sources, 2012,216:482-488. doi: 10.1016/j.jpowsour.2012.06.031
Han S.C., Singh S.P., Hwang Y.H.. Gadolinium-doped LiMn2O4 cathodes in Li ion batteries: understanding the stabilized structure and enhanced electrochemical kinetics[J]. J. Electrochem. Soc., 2012,159:A1867-A1873. doi: 10.1149/2.009212jes
Lee D.K., Han S.C., Ahn D.. Suppression of phase transition in LiTb0.01Mn1.99O4 cathodes with fast Li+ diffusion[J]. ACS Appl. Mater. Interfaces, 2012,4:6842-6848. doi: 10.1021/am302003r
Liang X., Zeng S., Liu Y.. Enhance cycling performance of LiMn2O4 cathode by Sr2+ and Cr3+ doping[J]. Mater. Sci. Technol., 2015,31:443-447. doi: 10.1179/1743284714Y.0000000625
Balaji S., Mani Chandran T., Mutharasu D.. A study on the influence of dysprosium cation substitution on the structural, morphological, and electrochemical properties of lithium manganese oxide[J]. Ionics, 2011,18:549-558.
Jayapal S., Mariappan R., Piraman S.. Dopant depends on morphological and electrochemical characteristics of LiMn2-XMoXO4 cathode nanoparticles[J]. J. Solid State Electrochem., 2013,17:2157-2165. doi: 10.1007/s10008-013-2055-x
Ebin B., Lindbergh G., Gürmen S.. Preparation and electrochemical properties of nanocrystalline LiBxMn2-xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method[J]. J. Alloys Compd., 2015,620:399-406. doi: 10.1016/j.jallcom.2014.09.098
Guo S.H., Zhang S.C., He X.M.. Synthesis and characterization of Sn-doped LiMn2O4 cathode materials for rechargeable Li-ion batteries[J]. J. Electrochem. Soc., 2008,155:A760-A763. doi: 10.1149/1.2965635
Lee H.R., Lee B., Chung K.Y.. Scalable synthesis and electrochemical investigations of fluorine-doped lithium manganese spinel oxide[J]. Electrochim. Acta, 2014,136:396-403. doi: 10.1016/j.electacta.2014.05.106
Sun Y.K., Oh B., Lee H.J.. Synthesis and electrochemical characterization of oxysulfide spinel LiAl0.15Mn1.85O3.97S0.03 cathode materials for rechargeable batteries[J]. Electrochim. Acta, 2000,46:541-546. doi: 10.1016/S0013-4686(00)00629-0
Ye S.H., Bo J.K., Li C.Z.. Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method[J]. Electrochim. Acta, 2010,55:2972-2977. doi: 10.1016/j.electacta.2010.01.018
Jiang Q.L., Du K., Cao Y.B.. Synthesis and characterization of phosphatemodified LiMn2O4 cathode materials for Li-ion battery[J]. Chin. Chem. Lett., 2010,21:1382-1386. doi: 10.1016/j.cclet.2010.04.039
Dou S.M.. Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries[J]. Ionics, 2015,21:3001-3030. doi: 10.1007/s11581-015-1545-5
Wei Q.L., Wang X.Y., Yang X.K.. The effects of crystal structure of the precursor MnO2 on electrochemical properties of spinel LiMn2O4[J]. J. Solid State Electrochem., 2012,16:3651-3659. doi: 10.1007/s10008-012-1809-1
Hernan L., Morales J., Sanchez L.. Sol-gel derived Li-V-Mn-O spinels as cathodes for rechargeable lithium batteries[J]. Solid State Ionics, 2000,133:179-188. doi: 10.1016/S0167-2738(00)00742-6
Yang X.J., Kanoh H., Tang W.P.. Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation[J]. J. Mater. Chem., 2000,10:1903-1909. doi: 10.1039/b000219o
Xu W., Yuan A., Wang Y.. Electrochemical studies of LiCrxFexMn2-2xO4 in an aqueous electrolyte[J]. J. Solid State Electrochem., 2011,16:429-434.
Sun Y.K., Park G.S., Lee Y.S.. Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling[J]. J. Electrochem. Soc., 2001,148:A994-A998. doi: 10.1149/1.1391270
Ragupathy P.. Understanding the role of manganese valence in 4 V spinel cathodes for lithium-ion batteries: a systematic investigation[J]. RSC Adv., 2014,4:670-675. doi: 10.1039/C3RA45689G
Capsoni D., Bini M., Chiodelli G.. Inhibition of Jahn-Teller cooperative distortion in spinel by LiMn2O4 transition metal ion doping[J]. Phys. Chem. Chem. Phys., 2001,3:2162-2166. doi: 10.1039/b100080m
Arabolla Rodríguez R., Mosqueda Laffita Y., Perez Cappe E.. A new strategy toward enhancing the phosphate doping in LixMn2O4 cathode materials[J]. Ceram. Int., 2014,40:12413-12422. doi: 10.1016/j.ceramint.2014.04.092
Prabu M., Reddy M.V., Selvasekarapandian S.. (Li, Al)-co-doped spinel Li (Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium ion batteries[J]. Electrochim. Acta, 2013,88:745-755. doi: 10.1016/j.electacta.2012.10.011
Amarilla J.M., Petrov K., Pic F.. Ni2+, Cr3+, Co3+ y=0.01 and 0.06) spinels characterization and electrochemical behavior at 25 and at 55℃ in rechargeable lithium cells[J]. J. Power Sources, 2009,191:591-600. doi: 10.1016/j.jpowsour.2009.02.026
Choi W., Manthiram A.. Influence of fluorine on the electrochemical performance of spinel LiMn2-y-zLiyZnzO4-ηFη cathodes[J]. J. Electrochem. Soc., 2007,154:A614-A618. doi: 10.1149/1.2732169
Choi W., Manthiram A.. Comparison of metal ion dissolutions from lithium ion battery cathodes[J]. J. Electrochem. Soc., 2006,153:A1760-A1764. doi: 10.1149/1.2219710
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271