Citation: Yang Xue, Cheng Bin, Cheng Hang, Xu Liang, Wang Jian-Li. Rapid construction of the unique BCD ring system of tricyclo[6.2.1.0] undecane in the C19-diterpenoid alkaloid aconitine[J]. Chinese Chemical Letters, ;2017, 28(8): 1788-1792. doi: 10.1016/j.cclet.2017.03.032 shu

Rapid construction of the unique BCD ring system of tricyclo[6.2.1.0] undecane in the C19-diterpenoid alkaloid aconitine

  • Corresponding author: Xu Liang, liangxu@scu.edu.cn Wang Jian-Li, wangjianli0804@163.com
  • Received Date: 7 February 2017
    Revised Date: 20 March 2017
    Accepted Date: 22 March 2017
    Available Online: 24 August 2017

Figures(3)

  • A model study leading to the preparation of the unique tricyclo [6.2.1.0] undecane BCD ring systems of aconitine is described. The synthesis features an unprecedented diastereoselective oxidative dearomatization/dimerization/retro-DA/IMDA cascade reaction and a highly efficient Wagner-Meerwein rearrangement.
  • 加载中
    1. [1]

      F. P. Wang, Q. H. Chen, in: G. A. Cordell (Ed. ), In the Alkaloids: Chemistry and Biology, 69, Elsevier Science, Amsterdam, 2010, pp. 1-577.

    2. [2]

      Ameri A.. The effects of aconitum alkaloids on the central nervous system[J]. Prog. Neurobiol., 1998,56:211-235. doi: 10.1016/S0301-0082(98)00037-9

    3. [3]

      Goodall K.J., Barker D., Brimble M.A.. A review of advances in the synthesis of analogues of the delphinium-alkaloid methyllycaconitine[J]. Synlett, 2005:1809-1827.  

    4. [4]

      (a) K. Wiesner, T. Y. R. Tsai, K. Huber, et al. , Total synthesis of talatisamine, a delphinine type alkaloid, J. Am. Chem. Soc. 96(1974) 4990-4992;
      (b) K. Wiesner, T. Y. R. Tsai, K. P. Nambiar, A new stereospecific total synthesis of chasmanine and 13-desoxydelphonine, Can. J. Chem. 56(1978) 1451-1454;
      (c) K. Wiesner, Total synthesis of delphinine-type alkaloids by simple, fourth generation methods, Pure Appl. Chem. 51(1979) 689-703.

    5. [5]

      Shi Y., Wilmot J.T., Nordstrom L.U.. Total synthesis, relay synthesis, and structural confirmation of the C18-norditerpenoid alkaloid neofinaconitine[J]. J. Am. Chem. Soc., 2013,135:14313-14320. doi: 10.1021/ja4064958

    6. [6]

      Marth C.J., Gallego G.M., Lee J.C.. Network-analysis-guided synthesis of weisaconitine D and liljestrandinine[J]. Nature, 2015,528:493-498. doi: 10.1038/nature16440

    7. [7]

      Nishiyama Y., Yokoshima S., Fukuyama T.. Total synthesis of (-)-cardiopetaline[J]. Org. Lett., 2016,18:2359-2362. doi: 10.1021/acs.orglett.6b00789

    8. [8]

      (a) J. L. van der Baan, J. W. F. K. Barnick, G. van Beek, et al. , Total synthesis of C19-diterpene alkaloids: construction of a functionalized ABCD-ring system, Tetrahedron 48(1992) 2773-2784;
      (b) L. C. Baillie, J. R. Bearder, W. S. Li, et al. , Studies into the synthesis of a sub-unit of the neurotoxic alkaloid methyllycaconitine, J. Chem. Soc. Perkin Trans. 1(1998) 4047-4055;
      (c) D. F. Taber, J. L. Liang, B. Chen, et al. , A model study toward the total synthesis of N-deacetyllappaconitine, J. Org. Chem. 70(2005) 8739-8742;
      (d) G. A. Kraus, S. Kesavan, Preparation of advanced intermediates for the synthesis of both methyllycaconitine and racemulsonine via a common intermediate, Tetrahedron Lett. 46(2005) 1111-1113;
      (e) R. M. Conrad, J. Du Bois, C-H amination in synthesis: an approach to the assembly of the B/C/D ring system of aconitine, Org. Lett. 9(2007) 5465-5468;
      (f) K. Hagiwara, T. Tabuchi, D. Urabea, et al. , Expeditious synthesis of the fused hexacycle of puberuline C via a radical-based cyclization/translocation/cyclization process, Chem. Sci. 7(2016) 4372-4378;
      (g) T. Tabuchi, D. Urabe, M. Inoue, Construction of the fused pentacycle of talatisamine via a combination of radical and cationic cyclizations, J. Org. Chem. 81(2016) 10204-10213.

    9. [9]

      (a) Z. G. Liu, L. Xu, Q. H. Chen, et al. , Construction of A/E/F ring systems of C19-diterpenoid alkaloids with both C-1 and C-6 oxygen functions, Tetrahedron 68(2012) 159-165;
      (b) H. Cheng, L. Xu, D. L. Chen, et al. , Construction of functionalized B/C/D ring system of C19-diterpenoid alkaloids via intramolecular Diels-Alder reaction followed by Wagnere-Meerwein rearrangement, Tetrahedron 68(2012) 1171-1176;
      (c) Z. G. Liu, H. Cheng, M. J. Ge, et al. , PIDA-promoted intramolecular transannular aziridination to synthesize bridged azatricyclic amines related to methyllycaconitine, Tetrahedron 69(2013) 5431-5437;
      (d) R. H. Mei, Z. G. Liu, H. Cheng, et al. , Synthesis of the 10-azatricyclo[3. 3. 2. 04, 8]decan core of C20-diterpenoid alkaloid racemulsonine via iodine(Ⅲ) promoted transannular aziridination reaction, Org. Lett. 15(2013) 2206-2209;
      (e) H. Cheng, F. H. Zeng, D. Ma, et al. , Expedient construction of the ABEF azatetracyclic ring systems of lycoctonine-type and 7, 17-seco-type C19-diterpenoid alkaloids, Org. Lett. 16(2014) 2299-2301;
      (f) M. L. Jiang, Y. J. Meng, W. Y. Xiong, et al. , Construction of functionalized ABEF ring system of C20-diterpenoid alkaloid racemulosine, Tetrahedron Lett. 57(2016) 1610-1612;
      (g) Y. L. Li, M. C. Liu, Y. J. Meng, Two new entries to the ABF tricyclic ring system of 7, 17-seco-type C19-diterpenoid alkaloids via free radical cyclization and[3+2] cycloaddition of nitrile oxide, Tetrahedron 72(2016) 3171-3176.

    10. [10]

      (a)J. Marco-Contelles, B. Sánchez, Stereoelectronic effects in the 6-exo free radical cyclization of acyclic sugar derivatives: synthesis of branched chain cyclitols, J. Org. Chem. 58(1993) 4293-4297;
      (b) D. Batty, D. Crich, S. M. Fortt, Synthesis of a 1a, 25-dihydroxyvitamin D3A ring model by an acyl radical cyclization, J. Chem. Soc. Chem. Commun. (1989) 1366-1368;
      (c) J. Quirante, C. Escolano, F. Diaba, et al. , Radical promoted cyclizations of trichloroacetamides with silyl enol ethers and enol acetates: the role of the hydride reagent[tris(trimethylsilyl)silane vs. tributylstannane], J. Chem. Soc. Perkin Trans. 1(1999) 1157-1162;
      (d) D. J. Wardrop, W. Zhang, N-methoxy-N-acylnitrenium ions: Application to the formal synthesis of (±)-desmethylamino FR901483, Org. Lett. 3(2001) 2353-2356.

    11. [11]

      (a) M. H. Filippini, R. Faure, J. Rodriguez, One-pot base-promoted tandem michael addition-intramolecular aldolization. Stereoselective synthesis and reactivity of 2-hydroxybicyclo[3. 2. 1]octan-8-ones, J. Org. Chem. 60(1995) 6872-6882;
      (b) H. Hagiwara, M. Fukushima, K. Kinugawa, et al. , First total syntheses of bicyclic marine sesquiterpenoids drechslerines A and B, Tetrahedron 67(2011) 4061-4068.

    12. [12]

      Petrier C., Luche J.L.. Allylzinc reagents additions in aqueous media[J]. J. Org. Chem., 1985,50:910-912. doi: 10.1021/jo00206a047

    13. [13]

      (a) Y. K. Chen, R. K. Peddinti, C. C. Liao, Diastereoselective intramolecular Diels-Alder reactions of masked o-benzoquinones: a short entry to highly functionalized tricyclic[m. 2. 2. 0] ring systems, Chem. Commun. (2001) 1340-1341;
      (b) S. K. Chittimalla, H. Y. Shiao, C. C. Liao, Domino retro Diels-Alder/Diels-Alder reaction: anefficient protocolfor the synthesis of highlyfunctionalized bicyclo[2. 2. 2]octenones and bicyclo[2. 2. 2]octadienones, Org. Biomol. Chem. 4(2006) 2267-2277;
      (c) H. Cheng, F. H. Zeng, X. Yang, et al. , Collective total syntheses of atisane-type diterpenes and atisine-type diterpenoid alkaloids: (±)-spiramilactone B, (±)-spiraminol, (±)-dihydroajaconine, and (±)-spiramines C and D, Angew. Chem. Int. Ed. 55(2016) 392-396.

  • 加载中
    1. [1]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    4. [4]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    5. [5]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    8. [8]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    9. [9]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    14. [14]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    15. [15]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    16. [16]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    17. [17]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    18. [18]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    19. [19]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    20. [20]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

Metrics
  • PDF Downloads(1)
  • Abstract views(662)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return