Citation: Niu Chao, Tuerxuntayi Adila, Li Gen, Kabas Madina, Dong Chang-Zhi, Akber Aisa Haji. Design, synthesis and bioactivity of chalcones and its analogues[J]. Chinese Chemical Letters, ;2017, 28(7): 1533-1538. doi: 10.1016/j.cclet.2017.03.018 shu

Design, synthesis and bioactivity of chalcones and its analogues


  • Author Bio:



    E-mail addresses: chang-zhi.dong@unin-paris-diderot.fr (C.-Z. Dong)

  • Corresponding author: Akber Aisa Haji, haji@ms.xjb.ac.cn
  • * Corresponding author at:State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • Received Date: 6 December 2016
    Revised Date: 18 January 2017
    Accepted Date: 9 March 2017
    Available Online: 14 July 2017

Figures(8)

  • The Vernohia anthelmintica L.'s extract is one of the most popular Uygur medicines used for vitiligo. It is believed that the chalcone compounds of the plant play an important role in the treatment since they may activate tyrosinase and improve melanin production. In this study, twenty-one chalcones and nine analogues were synthesized in view of three different components of chalcone (A, B ring and α, β-unsaturated carbonyl). After biological evaluation of their activity on tyrosinase in cell-free systems, the result showed that most compounds (except polyhydroxy chalcones) possess activator effect on the tyrosinase, especially for 13a-15a, 20a and 1b, which bearing a comparable activity to the positive control 8-MOP. SAR of these tyrosinase activator was summed up for the first time as well. Finally, compound 13a was found to increase melanin contents and tyrosinase activity 1.75 and 1.3 fold, respectively, compared with that of untreated murine B16 cells at the concentration of 40 μg/mL.
  • 加载中
    1. [1]

      Alikhan A., Felsten L.M., Daly M., Petronic-Rosic V.. Vitiligo A comprehensive overview: part Ⅰ. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up[J]. J. Am. Acad. Dermatol., 2011,65:473-491. doi: 10.1016/j.jaad.2010.11.061

    2. [2]

      Sandoval-Cruz M., Garcia-Carrasco M., Sanchez-Porras R.. epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up[J]. Autoimmun. Rev., 2011,10:762-765. doi: 10.1016/j.autrev.2011.02.004

    3. [3]

      Namazi M.R.. Neurogenic dysregulation oxidative stress, autoimmunity, and melanocytorrhagy in vitiligo: can they be interconnected?[J]. Pigm. Cell Res., 2007,20:360-363. doi: 10.1111/pcr.2007.20.issue-5

    4. [4]

      Ye Y., Chu J.H., Wang H.. Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells[J]. J. Ethnopharmacol., 2010,132:533-535. doi: 10.1016/j.jep.2010.09.007

    5. [5]

      J. R. Whitaker, Polyphenol oxidase, in: D. W. S. Wong (Ed. ), Food Enzymes, Structure and Mechanism, Chapman & Hall, New York, 1995, pp. 271-307.

    6. [6]

      Lei T.C.. Tyrosinase gene family and shin melanin biosynthesis[J]. Foreign Medsci.-Sec. Dermotol., 1998,24:81-87.

    7. [7]

      Garcia-Molina M.M., Muñoz-Muñoz J.L., Garcia-Molina F., García-Ruiz P.A., Garcia-Canovas F.. Action of Tyrosinase on ortho-substituted phenols: Possible influence on browning and melanogenesis[J]. J. Agric. Food Chem., 2012,60:6447-6455. doi: 10.1021/jf301238q

    8. [8]

      Ismaya W.T., Rozeboom H.J., Weijn A.. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone[J]. Biochemistry, 2011,50:5477-5486. doi: 10.1021/bi200395t

    9. [9]

      Yao L., Li Q., Shang J.. The effect of extract of different Vernonia anthelmintica L. on melanin synthesis and activity of tyrosianse in B16 cells[J]. J. XinJiang Med. Univ., 2010,33:1191-1193.  

    10. [10]

      Sun L., Shang J., Li H.J., Wu L.. The research on the anti-tumor chemical composition of Vernonia anthelmintica L[J]. J. Mod. Chin. Med., 2006,8:10-12.

    11. [11]

      Zhou J., Shang J., Ping F.F., Zhao G.R.. Alcohol extract from Vernonia anthelmintica (L.) willd seed enhances melanin synthesis through activation of the p38 MAPK signaling pathway in B16F10 cells and primary melanocytes[J]. J. Ethnopharmacol., 2012,143:639-647. doi: 10.1016/j.jep.2012.07.030

    12. [12]

      Turak A., Liu Y.Q., Aisa H.A.. Elemanolide dimers from seeds of Vernonia anthelmintica[J]. Fitoterapia, 2015,104:23-30. doi: 10.1016/j.fitote.2015.04.013

    13. [13]

      Wu J.F., Musadillin S., Feng S.C., Kong F.H., Xu R.S.. Studies on chemical constituent of Vernonia anthelmintics Willd[J]. Acta Chimica Sinica, 1991,49:1018-1022.

    14. [14]

      Tian G., Zhang U., Zhang T., Yang F., Ito Y.. Separation of flavonoids from the seeds of Vernonia anthelmintica Willd by high-speed counter-current chromatography[J]. J. Chromatogr. A, 2004,1049:219-222. doi: 10.1016/S0021-9673(04)01276-2

    15. [15]

      Yadava R.N., Bhargava B.. Phytochemical constituents from Vernonia anthelmintica Willd[J]. Int. J. Chem. Sci., 2010,8:2470-2482.  

    16. [16]

      Cai L.M., Huo S.X., Lin J., Wu P.P., Abudoukeremu K.. Chemical constituent of Vernonia anthelmintics (L.) Willd[J]. Chin. Tradit. Patent Med., 2012,34:2159-2161.  

    17. [17]

      J. Shang, J. G. Xu, L. H. Yu, L. Sun, H. J. Li, Chem. Abstr. 2006(145) (2006) 152560 CN 1778294A.

    18. [18]

      M. Yan, S. X. Huo, L. Gao, X. M. Peng, Chem. Abstr. 2012(157) (2012) 241762 CN 102526153A.

    19. [19]

      Nixha A.R., Arslan M., Atalay Y.. Synthesis and theoretical calculations of carbazole substituted chalcone urea derivatives and studies their polyphenol oxidase enzyme activity[J]. J. Enzyme Inhib. Med. Chem., 2013,28:808-815. doi: 10.3109/14756366.2012.688040

    20. [20]

      Sonmez F., Sevmezler S., Atahan A.. Evaluation of new chalcone derivatives as polyphenol oxidase inhibitors[J]. Bioorg. Med. Chem. Lett., 2011,21:7479-7482. doi: 10.1016/j.bmcl.2011.09.130

    21. [21]

      Dubois C., Haudecoeur R., Orio M.. Versatile effects of aurone structure on mushroom tyrosinase activity[J]. ChemBioChem, 2012,13:559-565. doi: 10.1002/cbic.v13.4

    22. [22]

      Haudecoeur R., Gouron A., Dubois C.. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors[J]. ChemBioChem, 2014,15:1325-1333. doi: 10.1002/cbic.v15.9

    23. [23]

      Tuerxuntayi A., Liu Y.Q., Tulake A.. Kaliziri extract upregulates tyrosinase TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells[J]. BMC Complement. Altern. Med., 2014,14166. doi: 10.1186/1472-6882-14-166

    24. [24]

      Li H.R., Kabas M., Xie L.Z., Aisa H.A.. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells[J]. Molecules (Basel Switzerland), 2014,19:12940-12948. doi: 10.3390/molecules190912940

    25. [25]

      Niu C., Pang G.X., Li G.. Synthesis and biological evaluation of furocoumarin derivatives on melanin synthesis in murine B16 cells for the treatment of vitiligo[J]. Bioorg. Med. Chem., 2016,24:5960-5968. doi: 10.1016/j.bmc.2016.09.056

    26. [26]

      Ren Q., Lu X.Y., Han J.X., Aisa H.A., Yuan T.. Triterpenoids and phenolics from the fruiting bodies of Inonotus hispidus and their activations of melanogenesis and tyrosinase[J]. Chin. Chem. Lett., 2017,28:1052-1056. doi: 10.1016/j.cclet.2016.12.010

    27. [27]

      Niu C., Li G., Kabas M., Aisa H.A.. Synthesis and activity on tyrosinase of novel chalcone derivatives[J]. Chem. J. Chin. Univ., 2014,35:1204-1211.  

    28. [28]

      Niu C., Li G., Tuerxuntayi A., Aisa H.A.. Synthesis and bioactivity of new chalcone derivatives as potential tyrosinase activator based on the click chemistry[J]. Chin. J. Chem., 2015,33:486-494. doi: 10.1002/cjoc.v33.4

    29. [29]

      Niu C., Yin L., Nie L.F.. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo[J]. Bioorg. Med. Chem., 2016,24:5440-5448. doi: 10.1016/j.bmc.2016.08.066

    30. [30]

      Damodar K., Kimb J.K., Jun J.G.. Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent antiinflammatory agents[J]. Chin. Chem. Lett., 2016,27:698-702. doi: 10.1016/j.cclet.2016.01.043

    31. [31]

      Khatib S., Nerya O., Musa R.. Chalcones as potent tyrosinase inhibitors: The importance of a 2, 4-substituted resorcinol moiety[J]. Bioorg. Med. Chem., 2005,13:433-441. doi: 10.1016/j.bmc.2004.10.010

    32. [32]

      Pearl E., Grimes M.D.. Psoralen photochemotherapy for vitiligo[J]. Clin. Dermatol., 1997,15:921-926. doi: 10.1016/S0738-081X(97)00133-8

    33. [33]

      Lei T.C., Victoria V., Yasumoto K.. Stimulation of melanoblast pigmentation by 8-methoxypsoralen: the involvement of microphthalmiaassociated transcription factor, the protein kinase a signal pathway, and proteasome-mediated degradation[J]. J. Invest. Dermatol., 2002,119:1341-1349. doi: 10.1046/j.1523-1747.2002.19607.x

    34. [34]

      Sensi M., Catani M., Castellano G.. Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional axl receptor kinase[J]. J. Invest. Dermatol., 2011,131:2448-2457. doi: 10.1038/jid.2011.218

    35. [35]

      Roh E., Yun C.Y., Yun J.Y.. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder[J]. J. Invest. Dermatol., 2013,133:1072-1079. doi: 10.1038/jid.2012.425

    36. [36]

      Mi G., Pérez B., Harto A., Misa R.D., Ledo A.. 8-MOP bath PUVA in the treatment of psoriasis: Clinical results in 42 patients[J]. J. Dermatol. Treat., 2009,7:11-12.

    37. [37]

      Balakrishna C., Payili N., Yennam S., Devi P.U., Behera M.. Synthesis of new kojic acid based unnatural α-amino acid derivatives[J]. Bioorg. Med. Chem. Lett., 2015,25:4753-4756. doi: 10.1016/j.bmcl.2015.07.099

    38. [38]

      Tang J.Y., Liu J.B., Wu F.Y.. Molecular docking studies and biological evaluation of 1, 3, 4-thiadiazole derivatives bearing Schiff base moieties as tyrosinase inhibitors[J]. Bioorg. Chem., 2016,69:29-36. doi: 10.1016/j.bioorg.2016.09.007

  • 加载中
    1. [1]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    2. [2]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    3. [3]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    4. [4]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    5. [5]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    6. [6]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    7. [7]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    8. [8]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    9. [9]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    10. [10]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    11. [11]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    12. [12]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    13. [13]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    14. [14]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    15. [15]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    18. [18]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    19. [19]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    20. [20]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

Metrics
  • PDF Downloads(1)
  • Abstract views(642)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return