Selective conversion of furfural to cyclopentanol over cobalt catalysts in one step
- Corresponding author: Zhang Ying, zhzhying@ustc.edu.cn; zhzhying@gmail.com
Citation:
Ma Yan-Fu, Wang Hao, Xu Guang-Yue, Liu Xiao-Hao, Zhang Ying, Fu Yao. Selective conversion of furfural to cyclopentanol over cobalt catalysts in one step[J]. Chinese Chemical Letters,
;2017, 28(6): 1153-1158.
doi:
10.1016/j.cclet.2017.03.017
van Putten R.J., van der Waal J.C., De Jong E.D.. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chem. Rev., 2013,113:1499-1597. doi: 10.1021/cr300182k
Gandini A., Lacerda T.M., Carvalho A.J.F., Trovatti E.. Progress of polymers from renewable resources:furans, vegetable oils, and polysaccharides[J]. Chem. Rev., 2015,116:1637-1669.
Karinen R., Vilonen K., Niemelä M.. Biorefining:heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural[J]. ChemSusChem, 2011,4:1002-1016. doi: 10.1002/cssc.201000375
Hu L., Zhao G., Hao W.W.. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC Adv., 2012,2:11184-11206. doi: 10.1039/c2ra21811a
Climent M.J., Corma A., Iborra S.. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts[J]. Green Chem., 2011,13:520-540. doi: 10.1039/c0gc00639d
Nakagawa Y., Tamura M., Tomishige K.. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. ACS Catal., 2013,3:2655-2668. doi: 10.1021/cs400616p
Gürbüz E.I., Gallo J.M.R., Alonso D.M.. Gallo M.R.[J]. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone, Angew. Chem. Int. Ed., 2013,52:1270-1274.
Cui J.L., Tan J.J., Deng T.S.. Conversion of carbohydrates to furfural via selective cleavage of the carbon-carbon bond:the cooperative effects of zeolite and solvent[J]. Green Chem., 2016,18:1619-1624. doi: 10.1039/C5GC01948F
Aida T.M., Sato Y., Watanabe M.. Dehydration of d-glucose in high temperature water at pressures up to 80 MPa[J]. J. Supercrit. Fluids, 2007,40:381-388. doi: 10.1016/j.supflu.2006.07.027
Jin F.M., Enomoto H.. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions:chemistry of acid/basecatalysed and oxidation reactions[J]. Energy Environ. Sci., 2011,4:382-397. doi: 10.1039/C004268D
Yan K., Wu G., Lafleur T., Jarvis C.. Production[J]. properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals, Renew. Sustain. Energy Rev., 2014,38:663-676.
Renz M.. Ketonization of carboxylic acids by decarboxylation:mechanism and scope[J]. Eur. J. Org. Chem., 2005,2005:979-988. doi: 10.1002/(ISSN)1099-0690
Dubkov K.A., Panov G.I., Starokon E.V., Parmon V.N.. Non-catalytic liquid phase oxidation of alkenes with nitrous oxide. 2. Oxidation of cyclopentene to cyclopentanone[J]. React. Kinet. Catal. Lett., 2002,77:197-205. doi: 10.1023/A:1020372726494
Marquié J., Laporterie A., Dubac J., Roques N.. Graphite-supported ketodecarboxylation of carboxylic diacids[J]. Synlett, 2001,2001:0493-0496. doi: 10.1055/s-2001-12319
Hronec M., Fulajtarová K.. Selective transformation of furfural to cyclopentanone[J]. Catal. Commun., 2012,24:100-104. doi: 10.1016/j.catcom.2012.03.020
Hronec M., Fulajtarová K., Liptaj T.. Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone[J]. Appl. Catal. A:Gen., 2012,437:104-111.
Fang R.Q., Liu H.L., Luque R., Li Y.W.. Efficient and selective hydrogenation of biomass-derived furfural to cyclopentanone using Ru catalysts[J]. Green Chem., 2015,17:4183-4188. doi: 10.1039/C5GC01462J
Hronec M., Fulajtarová K., Vávra I.. Carbon supported Pd-Cu catalysts for highly selective rearrangement of furfural to cyclopentanone[J]. Appl. Catal. B:Environ., 2016,181:210-219. doi: 10.1016/j.apcatb.2015.07.046
Zhang G.S., Zhu M.M., Zhang Q.. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts[J]. Green Chem., 2016,18:2155-2164. doi: 10.1039/C5GC02528A
Liu Y.H., Chen Z.H., Wang X.F.. Highly selective and efficient rearrangement of biomass-derived furfural to cyclopentanone over interface-active Ru/carbon nanotubes catalyst in water[J]. ACS Sustain. Chem. Eng., 2017,5:744-751. doi: 10.1021/acssuschemeng.6b02080
Yang Y.L., Du Z.T., Huang Y.H.. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts[J]. Green Chem., 2013,15:1932-1940. doi: 10.1039/c3gc37133f
Zhu H.Y., Zhou M.H., Zeng Z., Xiao G.M., Xiao R.. Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts[J]. Korean J. Chem. Eng., 2014,31:593-597. doi: 10.1007/s11814-013-0253-y
Wang Y., Sang S.Y., Zhu W., Gao L.J., Xiao G.M.. CuNi@C catalysts with high activity derived from metal-organic frameworks precursor for conversion of furfural to cyclopentanone[J]. Chem. Eng. J., 2016,299:104-111. doi: 10.1016/j.cej.2016.04.068
Guo J.H., Xu G.Y., Han Z.. Selective conversion of furfural to cyclopentanone with CuZnAl catalysts[J]. ACS Sustain. Chem. Eng., 2014,2:2259-2266. doi: 10.1021/sc5003566
Hronec M., Fulajtarová K., Soták T.. Highly selective rearrangement of furfuryl alcohol to cyclopentanone[J]. Appl. Catal. B:Environ., 2014,154:294-300.
Ohyama J., Kanao R., Ohira Y., Satsuma A.. The effect of heterogeneous acid-base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative[J]. Green Chem., 2016,18:676-680. doi: 10.1039/C5GC01723H
Zhou M.H., Zhu H.Y., Niu L., Xiao G.M., Xiao R.. Catalytic hydroprocessing of furfural to cyclopentanol over Ni/CNTs catalysts:model reaction for upgrading of bio-oil[J]. Catal. Lett., 2014,144:235-241. doi: 10.1007/s10562-013-1149-5
Zhou M.H., Zeng Z., Zhu H.Y., Xiao G.M., Xiao R.. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:model reaction for upgrading of bio-oil[J]. J. Energy Chem., 2014,23:91-96. doi: 10.1016/S2095-4956(14)60109-1
Wang Y., Zhou M.H., Wang T.Z., Xiao G.M.. Conversion of furfural to cyclopentanol on Cu/Zn/Al catalysts derived from hydrotalcite-like materials[J]. Catal Lett., 2015,145:1557-1565. doi: 10.1007/s10562-015-1539-y
Li X.L., Deng J., Shi J.. Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu-Co catalysts[J]. Green Chem., 2015,17:1038-1046. doi: 10.1039/C4GC01601G
Xua Y., Qiu S.B., Long J.X.. In situ hydrogenation of furfural with additives over a RANEY®Ni catalyst[J]. RSC Adv., 2015,5:91190-91195. doi: 10.1039/C5RA12844G
Zhang G., Vasudevan K.V., Scott B.L., Hanson S.K.. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions[J]. J. Am. Chem. Soc., 2013,135:8668-8681. doi: 10.1021/ja402679a
Liu X.H., Xu L.J., Xu G.Y.. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions[J]. ACS Catal., 2016,6:7611-7620. doi: 10.1021/acscatal.6b01785
Conley R.T., Metil I.. An investigation of the structure of furfuryl alcohol polycondensates with infrared spectroscopy[J]. J. Appl. Polym. Sci., 1963,7:37-52. doi: 10.1002/app.1963.070070104
Wewerka E.M.. An investigation of the polymerization of furfuryl alcohol with gel permeation chromatography[J]. J. Appl. Polym. Sci., 1968,12:1671-1681. doi: 10.1002/app.1968.070120716
Wewerka E.M.. Study of the γ-alumina polymerization of furfuryl alcohol[J]. J. Polym. Sci. Part A:Polym. Chem., 1971,9:2703-2715. doi: 10.1002/pol.1971.150090923
Kim T., Assary R.S., Pauls R.E.. Thermodynamics and reaction pathways of furfuryl alcohol oligomer formation[J]. Catal. Commun., 2014,46:66-70. doi: 10.1016/j.catcom.2013.11.030
Guigo N., Mija A., Vincent L., Sbirrazzuoli N.. Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization[J]. Phys. Chem. Chem. Phys., 2007,9:5359-5366. doi: 10.1039/b707950h
Lee J., Burt S.P., Carrero C.A.. Stabilizing cobalt catalysts for aqueousphase reactions by strongmetal-support interaction[J]. J. Catal., 2015,330:19-27. doi: 10.1016/j.jcat.2015.07.003
Kumar P., Srivastava V.C., Mishra I.M.. Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu-Zn-Al catalyst[J]. Energy Fuels, 2015,29:2664-2675. doi: 10.1021/ef502856z
de Souza P.M., Rabelo-Neto R.C., Borges L.E.. Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2[J]. ACS Catal., 2015,5:7385-7398. doi: 10.1021/acscatal.5b01501
Bandura A.V., Lvov S.N.. The ionization constant of water over wide ranges of temperature and density[J]. J. Phys. Chem. Ref. Data, 2006,35:15-30. doi: 10.1063/1.1928231
Xia S.Q., Li Y., Shang Q.Y., Zhang C.W., Ma P.S.. Liquid-phase catalytic hydrogenation of furfural in variable solvent media[J]. Trans. Tianjin Univ., 2016,22:202-210. doi: 10.1007/s12209-016-2804-x
Choura M., Belgacem N.M., Gandini A.. Acid-catalyzed polycondensation of furfuryl alcohol:mechanisms of chromophore formation and cross-linking[J]. Macromolecules, 1996,29:3839-3850. doi: 10.1021/ma951522f
Hronec M., Fulajtárova K., Mičušik M.. Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone[J]. Appl. Catal. A:Gen., 2013,468:426-431. doi: 10.1016/j.apcata.2013.08.052
Zhang X.H., Wang T.J., Ma L.L., Wu C.Z.. Aqueous-phase catalytic process for production of pentane from furfural over nickel-based catalysts[J]. Fuel, 2010,89:2697-2702. doi: 10.1016/j.fuel.2010.05.043
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
Jinyuan Cui , Tingting Yang , Teng Xu , Jin Lin , Kunlong Liu , Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Ruixue Liu , Xiaobing Ding , Qiwei Lang , Gen-Qiang Chen , Xumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214