Citation: Liu Lin, Yu Xiang-Mei, Zhang Bao, Meng Shu-Xian, Feng Ya-Qing. Synthesis of nano-TiO2 assisted by diethylene glycol for use in high efficiency dye-sensitized solar cells[J]. Chinese Chemical Letters, ;2017, 28(4): 765-770. doi: 10.1016/j.cclet.2017.03.011 shu

Synthesis of nano-TiO2 assisted by diethylene glycol for use in high efficiency dye-sensitized solar cells

  • Corresponding author: Zhang Bao, baozhang@tju.edu.cn Feng Ya-Qing, yqfeng@tju.edu.cn
  • Received Date: 28 November 2016
    Revised Date: 19 January 2017
    Accepted Date: 8 March 2017
    Available Online: 10 April 2017

Figures(7)

  • The performance of dye-sensitized solar cells(DSSCs)consisting of anatase TiO2 nanoparticles that were synthesized via a hydrothermal method was studied.The synthesized TiO2 nanoparticles were characterized by X-ray diffraction(XRD), nitrogen sorption analysis, scanning electron microscopy(SEM), high resolution transmission electron microscopy(HRTEM), and UV-vis spectroscopy.Then the J-V curve, electrochemical impedance spectroscopy(EIS), and open-circuit voltage decay(OCVD)measurement were applied to evaluate the photovoltaic performance of DSSCs.Compared with the commercial TiO2 nanoparticles(P25), the synthesized-TiO2 nanoparticles showed better performance.By adding diethylene glycol(DEG)before the hydrothermal process, the synthesized TiO2 nanoparticles(hereafter referred to as TiO2-DEG particles)shows narrower size distribution, larger specific surface area, higher crystallinity, and less surface defects than TiO2(DEG free)particles.The analysis of photovoltaic properties of DSSCs based on TiO2-DEG particles showed that the recombination of electron-hole pairs was decreased and the trapping of carries in grain boundaries restrained.It was believed that the photoelectrode fabricated with the as-prepared TiO2 nanoparticles improved the loading amount of dye sensitizers(N719), and enhanced the photocurrent of the DSSCs.As a result, the TiO2-DEG particle based cells achieved a photo-to-electricity conversion efficiency(η)of 7.90%, which is higher than 7.53% for the cell based on TiO2(DEG free)and 6.59% for the one fabricated with P25.
  • 加载中
    1. [1]

      J. Tian, Y. H. Leng, Z. H. Zhao, et al. , Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Nano Energy 11(2015)419-427.

    2. [2]

      Momeni M.M., Ghayeb Y.. Photochemical deposition of platinum on titanium dioxide-tungsten trioxide nanocomposites:an efficient photocatalyst under visible light irradiation[J]. J.Mater.Sci.:Mater.Electron., 2016,27:1062-1069. doi: 10.1007/s10854-015-3852-z

    3. [3]

      Yan Y.T., Liu Q., Du X.J.. Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles[J]. Anal.Chim.Acta, 2015,853:258-264. doi: 10.1016/j.aca.2014.10.021

    4. [4]

      Heo J.H., Han H.J., Kim D., Ahn T.K., Im S.H.. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1%power conversion efficiency[J]. Energy Environ.Sci., 2015,8:1602-1608. doi: 10.1039/C5EE00120J

    5. [5]

      Giordano F., Abate A., Baena J.P.C.. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells[J]. Nat.Commun., 2016,710379. doi: 10.1038/ncomms10379

    6. [6]

      O'Regan B., Grätzel M.. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353:737-740. doi: 10.1038/353737a0

    7. [7]

      Xu J., Wang G.X., Fan J.J.. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells[J]. J.Power Sources, 2015,274:77-84. doi: 10.1016/j.jpowsour.2014.10.033

    8. [8]

      Martsinovich N., Troisi A.. Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes[J]. Energy Environ.Sci., 2011,4:4473-4495. doi: 10.1039/c1ee01906f

    9. [9]

      Qian J.F., Liu P., Xiao Y.. TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells[J]. Adv.Mater., 2009,21:3663-3667. doi: 10.1002/adma.v21:36

    10. [10]

      Wang Z.B., Tang Q.W., He B.L.. Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell.A strategy of enhancing light harvest[J]. J.Power Sources, 2015,275:175-180. doi: 10.1016/j.jpowsour.2014.11.006

    11. [11]

      Wang M.K., Chamberland N., Breau L.. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells[J]. Nat.Chem., 2010,2:385-389. doi: 10.1038/nchem.610

    12. [12]

      Lim S.P., Pandikumar A., Lim H.N.. Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N S-Co-doped-TiO2 photoanode[J]. Sci.Rep., 2015,511922. doi: 10.1038/srep11922

    13. [13]

      Polo A.S., Itokazu M.K., Iha N.Y.M.. Metal complex sensitizers in dye-sensitized solar cells[J]. Coord.Chem.Rev., 2004,248:1343-1361. doi: 10.1016/j.ccr.2004.04.013

    14. [14]

      Park N.G., van de Lagemaat J., Frank A.J.. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells[J]. J.Phys.Chem.B, 2000,104:8989-8994.  

    15. [15]

      Kumar S.G., Rao K.S.R.K.. Polymorphic phase transition among the titania crystal structures using a solution-based approach:from precursor chemistry to nucleation process[J]. Nanoscale, 2014,6:11574-11632. doi: 10.1039/C4NR01657B

    16. [16]

      Liu H.Y., Joo J.B., Dahl M.. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity[J]. Energy Environ.Sci., 2015,8:286-296. doi: 10.1039/C4EE02618G

    17. [17]

      Qiu B.C., Xing M.Y., Zhang J.L.. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries[J]. J.Am. Chem.Soc., 2014,136:5852-5855. doi: 10.1021/ja500873u

    18. [18]

      Ong W.J., Tan L.L., Chai S.P.. Highly reactive{001}facets of TiO2-based composites:synthesis, formation mechanism and characterization[J]. Nanoscale, 2014,6:1946-2008. doi: 10.1039/c3nr04655a

    19. [19]

      Liu N., Chen X.Y., Zhang J.L., Schwank J.W.. A review on TiO2-based nanotubes synthesized via hydrothermal method:formation mechanism, structure modification, and photocatalytic applications[J]. Catal.Today, 2014,225:34-51. doi: 10.1016/j.cattod.2013.10.090

    20. [20]

      Barnard A.S., Curtiss L.A.. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry[J]. Nano Lett., 2005,5:1261-1266. doi: 10.1021/nl050355m

    21. [21]

      Mosconi E., Selloni A., Angelis F.D.. Solvent effects on the adsorption geometry and electronic structure of dye-sensitized TiO2:a first-principles investigation[J]. J.Phys.Chem.C, 2012,116:5932-5940.  

    22. [22]

      Jung H.S., Lee J.K., Lee S., Hong K.S., Shin H.. Acid adsorption on TiO2 nanoparticles-an electrochemical properties study[J]. J.Phys.Chem.C, 2008,112:8476-8480. doi: 10.1021/jp711689u

    23. [23]

      Ito S., Chen P., Comte P.. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells[J]. Prog.Photovolt.:Res.Appl., 2007,15:603-612. doi: 10.1002/(ISSN)1099-159X

    24. [24]

      Sun X.H., Liu Y.M., Tai Q.D.. High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability[J]. J.Phys.Chem.C, 2012,116:11859-11866. doi: 10.1021/jp211838g

    25. [25]

      Abdullaha M.H., Rusop M.. Improved performance of dye-sensitized solar cell with a specially tailored TiO2 compact layer prepared by RF magnetron sputtering[J]. J.Alloys Compd., 2014,600:60-66. doi: 10.1016/j.jallcom.2014.01.139

    26. [26]

      Yu H., Zhang S.Q., Zhao H.J., Will G., Liu P.R.. An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells[J]. Electrochim.Acta, 2009,54:1319-1324. doi: 10.1016/j.electacta.2008.09.025

    27. [27]

      Karthick S.N., Hemalatha K.V., Raj C.J., Subramania A., Kim H.J.. Preparation of TiO2 paste using poly(vinylpyrrolidone)for dye sensitized solar cells[J]. Thin Solid Films, 2012,520:7018-7021. doi: 10.1016/j.tsf.2012.07.050

    28. [28]

      Yuan S.J., Li Y.G., Zhang Q.H., Wang H.Z.. Anatase TiO2 sol as a low reactive precursor to form the photoanodes with compact films of dye-sensitized solar cells[J]. Electrochim.Acta, 2012,79:182-188. doi: 10.1016/j.electacta.2012.06.104

    29. [29]

      Fang X.L., Li M.Y., Guo K.M.. Improved properties of dye-sensitized solar cells by incorporation of graphene into the photoelectrodes[J]. Electrochim.Acta, 2012,65:174-178. doi: 10.1016/j.electacta.2012.01.038

    30. [30]

      Cameron P.J., Peter L.M.. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells[J]. J.Phys.Chem.B, 2005,109:7392-7398. doi: 10.1021/jp0407270

    31. [31]

      Wang Q., Maser J.E., Grätzel M.. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells[J]. J.Phys.Chem.B, 2005,109:14945-14953. doi: 10.1021/jp052768h

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    10. [10]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    11. [11]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    12. [12]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    13. [13]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    17. [17]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return