Citation: Xia Zhe, Yu Feng-Xin, Lu Shuai-Cheng, Xue Ding-Jiang, He Yi-Su, Yang Bo, Wang Chong, Ding Rui-Qing, Zhong Jie, Tang Jiang. Synthesis and characterization of NaSbS2 thin film for potential photodetector and photovoltaic application[J]. Chinese Chemical Letters, ;2017, 28(4): 881-887. doi: 10.1016/j.cclet.2017.03.003 shu

Synthesis and characterization of NaSbS2 thin film for potential photodetector and photovoltaic application

  • Corresponding author: Tang Jiang, 
  • Received Date: 9 February 2017
    Revised Date: 1 March 2017
    Accepted Date: 2 March 2017
    Available Online: 4 April 2017

Figures(5)

  • Solution-processed semiconductors such as perovskite compounds have attracted tremendous attention to photovoltaic research due to the significantly higher energy conversion efficiencies and lower processing costs.However, concerns over stability and the toxicity on lead in CH3NH3PbI3 create the need for still easily-accessible but more stable and environmentally friendly materials.Here, we present NaSbS2 as a non-toxic, earth-abundant promising material consisting of densely packed (1/∞)[SbS2-] polymeric chains and sodium ions.The ionic nature makes it sharing the similar dissolution superiority with perovskite, providing great potential for low-cost and large-scale fabrication.Phase pure NaSbS2 thin film was successfully fabricated using spray-pyrolysis method, and its photovoltaic relevant material, optical and electrical properties were carefully studied.Finally, a prototype NaSbS2-based thin-film solar cell has been successfully demonstrated, yielding a power conversion efficiency of 0.13%.The systematic experimental and theoretical investigations, combined with proof-of-principle device results, indicate that NaSbS2 is indeed very promising for photovoltaic application.
  • 加载中
    1. [1]

      Green M.A., A.Ho-Baillie , Snaith H.J. The emergence of perovskite solar cells[J]. Nat.Photonics, 2014,8:506-514. doi: 10.1038/nphoton.2014.134

    2. [2]

      Snaith H.J. Perovskites The emergence of a new Era for low-cost, high-efficiency solar cells[J]. J.Phys.Chem.Lett., 2013,4:3623-3630. doi: 10.1021/jz4020162

    3. [3]

      G. Hodes, D. Cahen, Photovoltaics Perovskite cells roll forward, Nat. Photonics 8 (2014)87-88.

    4. [4]

      Service R.F. Perovskite solar cells keep on surging[J]. Science, 2014,344458. doi: 10.1126/science.344.6183.458

    5. [5]

      Park N.G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J]. J.Phys.Chem.Lett., 2013,4:2423-2429. doi: 10.1021/jz400892a

    6. [6]

      H. S. Jung, N. G. Park, Perovskite solar cells: from materials to devices, Small. 11 (2015)10-25.

    7. [7]

      M. Grätzel, The light and shade of perovskite solar cells, Nat. Mater. 13(2014) 838-842.

    8. [8]

      Kim H.S., Sang H.I., Park N.G. Organolead halide perovskite:new horizons in solar cell research[J]. J.Phys.Chem.C, 2014,118:5615-5625.

    9. [9]

      Jeon N.J., Noh J.H., Kim Y.C.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat.Mater., 2014,13:897-903. doi: 10.1038/nmat4014

    10. [10]

      Burschka J., Pellet N., Moon S.J.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340

    11. [11]

      J. Zhao, B. Cai, Z. Luo, et al. , Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment, Sci. Rep. 6 (2016)21976.

    12. [12]

      Kaltenbrunner, Adam, E.D.Głowacki. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air[J]. Nat.Mater., 2015,14:1032-1039. doi: 10.1038/nmat4388

    13. [13]

      Goodenough J.B. Localized-itinerant electronic transitions in oxides and sulfides[J]. J.Alloy.Compd., 1997,262:1-9.

    14. [14]

      Harrison M.R., Francesconi M.G. Mixed-metal one-dimensional sulfides-A class of materials with differences and similarities to oxides[J]. Coord.Chem.Rev., 2011,255:451-458. doi: 10.1016/j.ccr.2010.10.008

    15. [15]

      Z. Xia, J. Zhong, M. Leng, et al. , Generalized water-processed metal chalcogenide complexes: synthesis and applications, Chem. Mater. 27 (2015)8048-8057.

    16. [16]

      Yang B., Xue D.J., Leng M.. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1-xSex)3 film:molecular precursor identification, film fabrication and band gap tuning[J]. Sci.Rep., 2015,510978. doi: 10.1038/srep10978

    17. [17]

      Yang B., Wang L., Han J.. CuSbS2 as a promising earth-abundant photovoltaic absorber material:a combined theoretical and experimental study[J]. Chem.Mater., 2014,26:3135-3143. doi: 10.1021/cm500516v

    18. [18]

      Janz G.J., Downey J.R., Roduner E.. Raman studies of sulfur-containing anions in inorganic polysulfides.Sodium polysulfides[J]. ChemInform., 1976,7:1755-1758.

    19. [19]

      Panthani M.G., Stolle C.J., Reid D.K.. CuInSe2 quantum dot solar cells with high open-circuit voltage[J]. J.Phys.Chem.Lett., 2013,4:2030-2034. doi: 10.1021/jz4010015

    20. [20]

      Stolle C.J., Panthani M.G., Harvey T.B., Akhavan V.A., Korgel B.A. Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals[J]. ACS.Appl.Mater.Inter., 2012,4:2757-2761. doi: 10.1021/am3003846

    21. [21]

      V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, et al. , Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics, ChemInform 43 (2012)2-12.

    22. [22]

      Zhang H., Solomon L.V., Ha D.H.. (NH4)2S, a highly reactive molecular precursor for low temperature anion exchange reactions in nanoparticles[J]. Dalton Transaction., 2013,42:12596-12599. doi: 10.1039/c3dt50803j

    23. [23]

      Gao Y., Luo H., Zhang Z.. Nanoceramic VO2 thermochromic smart glass:A review on progress in solution processing[J]. Nano.Energy, 2012,1:221-246. doi: 10.1016/j.nanoen.2011.12.002

    24. [24]

      Panda D., Tseng T.Y. Growth dielectric properties, and memory device applications of ZrO2 thin films[J]. Thin.Solid.Films, 2013,531:1-20. doi: 10.1016/j.tsf.2013.01.004

    25. [25]

      Smincakova E., Raschman P. Leaching of natural stibnite using Na2S and NaOH Solutions[J]. Int.J.Energy.Eng., 2011,2:85-89.

    26. [26]

      Johnson M., Baryshev S.V., Thimsen E.. Alkali-metal-enhanced grain growth in Cu2ZnSnS4 thin films[J]. Energy Environ.Sci., 2014,7:1931-1938. doi: 10.1039/C3EE44130J

    27. [27]

      Wagner C.D. Chemical shifts of auger lines, and the auger parameter[J]. Faraday. Discuss., 1975,60:291-300. doi: 10.1039/dc9756000291

    28. [28]

      Xue D.J., Yang B., Yuan Z.K.. CuSbSe2 as a potential photovoltaic absorber material:studies from theory to experiment[J]. Adv.Energy Mater., 2015,5:1-9.

    29. [29]

      Zhou Y., Leng M., Xia Z.. Solution-processed antimony selenide heterojunction solar cells[J]. Adv.Energy Mater., 2014,4:1079-1098.

    30. [30]

      Wang G., Wang S., Cui Y., Pan D. A novel and versatile strategy to prepare metal-organic molecular precursor solutions and its application in Cu (In, Ga) (S, Se)2 solar cells[J]. Chem.Mater., 2012,24:3993-3997. doi: 10.1021/cm3027303

    31. [31]

      Q. Guo, G. M. Ford, W. C. Yang, et al. , Fabrication of 7. 2% efficient CZTSSe solar cells using CZTS nanocrystals, J. Am. Chem. Soc. 132(2010)17384-17386.

    32. [32]

      Zhong J., Xia Z., Zhang C.. One-pot synthesis of self-stabilized aqueous nanoinks for Cu2ZnSn (S, Se)4 solar cells[J]. Chem.Mater., 2014,26:3573-3578. doi: 10.1021/cm501270j

    33. [33]

      Abaab M., Kanzari M., Rezig B., Brunel M. Structural and optical properties of sulfur-annealed CuInS 2 thin films[J]. Sol.Energy Mat.Sol.C, 1999,59:299-307. doi: 10.1016/S0927-0248(99)00043-4

    34. [34]

      E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag. 22(1970)903-922.

    35. [35]

      Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method[J]. Phys.Rev.Lett., 1980,45:566-569. doi: 10.1103/PhysRevLett.45.566

    36. [36]

      Perdew J.P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical.Review.B:Condensed. Matter., 1981,23:5048-5079. doi: 10.1103/PhysRevB.23.5048

    37. [37]

      Poglitsch A., Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (â…¡) observed by millimeter-wave spectroscopy[J]. J.Chem.Phys., 1987,87:6373-6378. doi: 10.1063/1.453467

    38. [38]

      Zhang H., Solomon L.V., Ha D.H.. (NH4)2S, a highly reactive molecular precursor for low temperature anion exchange reactions in nanoparticles[J]. Dalton.Trans., 2013,35:12596-12599.

    39. [39]

      Zhao Y., Nardes A.M., Zhu K. Solid-state mesostructured perovskite CH3NH3PbI3 solar cells:charge transport, recombination, and diffusion length[J]. J.Phys.Chem.Lett., 2014,5:490-494. doi: 10.1021/jz500003v

    40. [40]

      T. Gershon, K. Sardashti, O. Gunawan, et al. , Photovoltaic device with over 5% efficiency based on an n-type Ag3ZnSnSe4 absorber, Adv. Energy Mater. 6(22) (2016)1-7.

    41. [41]

      J. Zhong, Z. Xia, M. Luo, et al. , Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu3ZnSn (S, Se)4 solar cells, Sci, Rep. 4(2014)6288.

  • 加载中
    1. [1]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    2. [2]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    3. [3]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    4. [4]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    7. [7]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    8. [8]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    9. [9]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    10. [10]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    11. [11]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    14. [14]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    15. [15]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    18. [18]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

Metrics
  • PDF Downloads(4)
  • Abstract views(683)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return