Citation:
Xia Zhe, Yu Feng-Xin, Lu Shuai-Cheng, Xue Ding-Jiang, He Yi-Su, Yang Bo, Wang Chong, Ding Rui-Qing, Zhong Jie, Tang Jiang. Synthesis and characterization of NaSbS2 thin film for potential photodetector and photovoltaic application[J]. Chinese Chemical Letters,
;2017, 28(4): 881-887.
doi:
10.1016/j.cclet.2017.03.003
-
Solution-processed semiconductors such as perovskite compounds have attracted tremendous attention to photovoltaic research due to the significantly higher energy conversion efficiencies and lower processing costs.However, concerns over stability and the toxicity on lead in CH3NH3PbI3 create the need for still easily-accessible but more stable and environmentally friendly materials.Here, we present NaSbS2 as a non-toxic, earth-abundant promising material consisting of densely packed (1/∞)[SbS2-] polymeric chains and sodium ions.The ionic nature makes it sharing the similar dissolution superiority with perovskite, providing great potential for low-cost and large-scale fabrication.Phase pure NaSbS2 thin film was successfully fabricated using spray-pyrolysis method, and its photovoltaic relevant material, optical and electrical properties were carefully studied.Finally, a prototype NaSbS2-based thin-film solar cell has been successfully demonstrated, yielding a power conversion efficiency of 0.13%.The systematic experimental and theoretical investigations, combined with proof-of-principle device results, indicate that NaSbS2 is indeed very promising for photovoltaic application.
-
Keywords:
- NaSbS2,
- Solar cell,
- Solution-processed,
- Thin film,
- Ionic-covalent compound
-
-
-
[1]
Green M.A., A.Ho-Baillie , Snaith H.J. The emergence of perovskite solar cells[J]. Nat.Photonics, 2014,8:506-514. doi: 10.1038/nphoton.2014.134
-
[2]
Snaith H.J. Perovskites The emergence of a new Era for low-cost, high-efficiency solar cells[J]. J.Phys.Chem.Lett., 2013,4:3623-3630. doi: 10.1021/jz4020162
-
[3]
G. Hodes, D. Cahen, Photovoltaics Perovskite cells roll forward, Nat. Photonics 8 (2014)87-88.
-
[4]
Service R.F. Perovskite solar cells keep on surging[J]. Science, 2014,344458. doi: 10.1126/science.344.6183.458
-
[5]
Park N.G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J]. J.Phys.Chem.Lett., 2013,4:2423-2429. doi: 10.1021/jz400892a
-
[6]
H. S. Jung, N. G. Park, Perovskite solar cells: from materials to devices, Small. 11 (2015)10-25.
-
[7]
M. Grätzel, The light and shade of perovskite solar cells, Nat. Mater. 13(2014) 838-842.
-
[8]
Kim H.S., Sang H.I., Park N.G. Organolead halide perovskite:new horizons in solar cell research[J]. J.Phys.Chem.C, 2014,118:5615-5625.
-
[9]
Jeon N.J., Noh J.H., Kim Y.C.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat.Mater., 2014,13:897-903. doi: 10.1038/nmat4014
-
[10]
Burschka J., Pellet N., Moon S.J.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340
-
[11]
J. Zhao, B. Cai, Z. Luo, et al. , Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment, Sci. Rep. 6 (2016)21976.
-
[12]
Kaltenbrunner, Adam, E.D.Głowacki. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air[J]. Nat.Mater., 2015,14:1032-1039. doi: 10.1038/nmat4388
-
[13]
Goodenough J.B. Localized-itinerant electronic transitions in oxides and sulfides[J]. J.Alloy.Compd., 1997,262:1-9.
-
[14]
Harrison M.R., Francesconi M.G. Mixed-metal one-dimensional sulfides-A class of materials with differences and similarities to oxides[J]. Coord.Chem.Rev., 2011,255:451-458. doi: 10.1016/j.ccr.2010.10.008
-
[15]
Z. Xia, J. Zhong, M. Leng, et al. , Generalized water-processed metal chalcogenide complexes: synthesis and applications, Chem. Mater. 27 (2015)8048-8057.
-
[16]
Yang B., Xue D.J., Leng M.. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1-xSex)3 film:molecular precursor identification, film fabrication and band gap tuning[J]. Sci.Rep., 2015,510978. doi: 10.1038/srep10978
-
[17]
Yang B., Wang L., Han J.. CuSbS2 as a promising earth-abundant photovoltaic absorber material:a combined theoretical and experimental study[J]. Chem.Mater., 2014,26:3135-3143. doi: 10.1021/cm500516v
-
[18]
Janz G.J., Downey J.R., Roduner E.. Raman studies of sulfur-containing anions in inorganic polysulfides.Sodium polysulfides[J]. ChemInform., 1976,7:1755-1758.
-
[19]
Panthani M.G., Stolle C.J., Reid D.K.. CuInSe2 quantum dot solar cells with high open-circuit voltage[J]. J.Phys.Chem.Lett., 2013,4:2030-2034. doi: 10.1021/jz4010015
-
[20]
Stolle C.J., Panthani M.G., Harvey T.B., Akhavan V.A., Korgel B.A. Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals[J]. ACS.Appl.Mater.Inter., 2012,4:2757-2761. doi: 10.1021/am3003846
-
[21]
V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, et al. , Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics, ChemInform 43 (2012)2-12.
-
[22]
Zhang H., Solomon L.V., Ha D.H.. (NH4)2S, a highly reactive molecular precursor for low temperature anion exchange reactions in nanoparticles[J]. Dalton Transaction., 2013,42:12596-12599. doi: 10.1039/c3dt50803j
-
[23]
Gao Y., Luo H., Zhang Z.. Nanoceramic VO2 thermochromic smart glass:A review on progress in solution processing[J]. Nano.Energy, 2012,1:221-246. doi: 10.1016/j.nanoen.2011.12.002
-
[24]
Panda D., Tseng T.Y. Growth dielectric properties, and memory device applications of ZrO2 thin films[J]. Thin.Solid.Films, 2013,531:1-20. doi: 10.1016/j.tsf.2013.01.004
-
[25]
Smincakova E., Raschman P. Leaching of natural stibnite using Na2S and NaOH Solutions[J]. Int.J.Energy.Eng., 2011,2:85-89.
-
[26]
Johnson M., Baryshev S.V., Thimsen E.. Alkali-metal-enhanced grain growth in Cu2ZnSnS4 thin films[J]. Energy Environ.Sci., 2014,7:1931-1938. doi: 10.1039/C3EE44130J
-
[27]
Wagner C.D. Chemical shifts of auger lines, and the auger parameter[J]. Faraday. Discuss., 1975,60:291-300. doi: 10.1039/dc9756000291
-
[28]
Xue D.J., Yang B., Yuan Z.K.. CuSbSe2 as a potential photovoltaic absorber material:studies from theory to experiment[J]. Adv.Energy Mater., 2015,5:1-9.
-
[29]
Zhou Y., Leng M., Xia Z.. Solution-processed antimony selenide heterojunction solar cells[J]. Adv.Energy Mater., 2014,4:1079-1098.
-
[30]
Wang G., Wang S., Cui Y., Pan D. A novel and versatile strategy to prepare metal-organic molecular precursor solutions and its application in Cu (In, Ga) (S, Se)2 solar cells[J]. Chem.Mater., 2012,24:3993-3997. doi: 10.1021/cm3027303
-
[31]
Q. Guo, G. M. Ford, W. C. Yang, et al. , Fabrication of 7. 2% efficient CZTSSe solar cells using CZTS nanocrystals, J. Am. Chem. Soc. 132(2010)17384-17386.
-
[32]
Zhong J., Xia Z., Zhang C.. One-pot synthesis of self-stabilized aqueous nanoinks for Cu2ZnSn (S, Se)4 solar cells[J]. Chem.Mater., 2014,26:3573-3578. doi: 10.1021/cm501270j
-
[33]
Abaab M., Kanzari M., Rezig B., Brunel M. Structural and optical properties of sulfur-annealed CuInS 2 thin films[J]. Sol.Energy Mat.Sol.C, 1999,59:299-307. doi: 10.1016/S0927-0248(99)00043-4
-
[34]
E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag. 22(1970)903-922.
-
[35]
Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method[J]. Phys.Rev.Lett., 1980,45:566-569. doi: 10.1103/PhysRevLett.45.566
-
[36]
Perdew J.P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical.Review.B:Condensed. Matter., 1981,23:5048-5079. doi: 10.1103/PhysRevB.23.5048
-
[37]
Poglitsch A., Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (â…¡) observed by millimeter-wave spectroscopy[J]. J.Chem.Phys., 1987,87:6373-6378. doi: 10.1063/1.453467
-
[38]
Zhang H., Solomon L.V., Ha D.H.. (NH4)2S, a highly reactive molecular precursor for low temperature anion exchange reactions in nanoparticles[J]. Dalton.Trans., 2013,35:12596-12599.
-
[39]
Zhao Y., Nardes A.M., Zhu K. Solid-state mesostructured perovskite CH3NH3PbI3 solar cells:charge transport, recombination, and diffusion length[J]. J.Phys.Chem.Lett., 2014,5:490-494. doi: 10.1021/jz500003v
-
[40]
T. Gershon, K. Sardashti, O. Gunawan, et al. , Photovoltaic device with over 5% efficiency based on an n-type Ag3ZnSnSe4 absorber, Adv. Energy Mater. 6(22) (2016)1-7.
-
[41]
J. Zhong, Z. Xia, M. Luo, et al. , Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu3ZnSn (S, Se)4 solar cells, Sci, Rep. 4(2014)6288.
-
[1]
-
-
-
[1]
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
-
[2]
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
-
[3]
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
-
[4]
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
-
[5]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[6]
Zili Ma , Zeyu Li , Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450
-
[7]
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
-
[8]
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
-
[9]
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
-
[10]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[11]
Panke Zhou , Hong Yu , Mun Yin Chee , Tao Zeng , Tianli Jin , Hongling Yu , Shuo Wu , Wen Siang Lew , Xiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279
-
[12]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[13]
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
-
[14]
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
-
[15]
Mohamed Saber Lassoued , Faizan Ahmad , Yanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477
-
[16]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[17]
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
-
[18]
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
-
[19]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[20]
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(683)
- HTML views(10)