Highly efficient preparation of 5-hydroxymethylfurfural from sucrose using ionic liquids and heteropolyacid catalysts in dimethyl sulfoxide-water mixed solvent
- Corresponding author: Zang Hong-Jun, zanghongjun@tjpu.edu.cn
Citation:
Yu Song-Bai, Zang Hong-Jun, Yang Xiao-Li, Zhang Ming-Chuan, Xie Rui-Rui, Yu Pei-Fei. Highly efficient preparation of 5-hydroxymethylfurfural from sucrose using ionic liquids and heteropolyacid catalysts in dimethyl sulfoxide-water mixed solvent[J]. Chinese Chemical Letters,
;2017, 28(7): 1479-1484.
doi:
10.1016/j.cclet.2017.02.016
Zhang X., Zhang D., Sun Z.. Highly efficient preparation of hmf from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction[J]. Appl. Catal. B-Environ., 2016,196:50-56. doi: 10.1016/j.apcatb.2016.05.019
Christensen C.H., Rass-Hansen J., Marsden C.. The renewable chemicals industry[J]. Chemsuschem., 2008,1:283-289. doi: 10.1002/(ISSN)1864-564X
Corma A., Iborra S., Velty A.. Chemical routes for the transformation of biomass into chemicals[J]. Chem. Rev., 2007,107:2411-2502. doi: 10.1021/cr050989d
Röper H.. Renewable raw materials in Europe-industrial utilisation of starch and sugar[J]. Starch-St?rke, 2002,54:89-99. doi: 10.1002/1521-379X(200204)54:3/4<89::AID-STAR89>3.0.CO;2-I
Jadhav A.H., Kim H., Hwang I.T.. An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water[J]. Bioresour. Technol., 2013,132:342-350. doi: 10.1016/j.biortech.2013.01.030
Jain A., Shore A.M., Jonnalagadda S.C.. Conversion of fructose, glucose and sucrose to 5-hydroxymethyl-2-furfural over mesoporous zirconium phosphate catalyst[J]. Appl. Catal. A-Gen., 2015,489:72-76. doi: 10.1016/j.apcata.2014.10.020
Rosatella A.A., Simeonov S.P., Frade R.F.M.. Cheminform abstract: 5-hydroxymethylfurfural (hmf) as a building block platform: biological properties, synthesis and synthetic applications[J]. Green Chem., 2011,13:754-793. doi: 10.1039/c0gc00401d
Ståhlberg T., Rodriguez-Rodriguez S., Fristrup P.. Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter[J]. Chem. Eur. J., 2011,17:1456-1464. doi: 10.1002/chem.v17.5
Okano T., Qiao K., Bao Q.. Dehydration of fructose to 5-hydroxymethylfurfural (hmf) in an aqueous acetonitrile biphasic system in the presence of acidic ionic liquids[J]. Appl. Catal. A-Gen., 2013,451:1-5. doi: 10.1016/j.apcata.2012.11.004
Yong G., Zhang Y., Ying J.. Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose[J]. Angew. Chem. Int. Ed., 2008,47:9345-9348. doi: 10.1002/anie.200803207
Chinnappan A., Jadhav A.H., Chung W.J.. Conversion of sugars (sucrose and glucose) into 5-hydroxymethylfurfural in pyridinium based dicationic ionic liquid ([C10(EPy)2]2Br-) with chromium chloride as a catalyst[J]. Ind. Crop Prod., 2015,76:12-17. doi: 10.1016/j.indcrop.2015.05.085
Peters S., Rose T., Moser M.. Sucrose: a prospering and sustainable organic raw material[J]. Top. Curr. Chem., 2010,294:1-23. doi: 10.1007/978-3-642-14837-8
Chun J.A., Lee J.W., Yi Y.B.. Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid[J]. Korean J. Chem. Eng., 2010,27:930-935. doi: 10.1007/s11814-010-0167-x
Jadhav A.H., Kim H., Hwang I.T.. Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (hmf) using dicationic room temperature ionic liquids as a catalyst[J]. Catal. Commun., 2012,21:96-103. doi: 10.1016/j.catcom.2012.02.007
Liu W., Wang Y., Li W.. Polyethylene glycol-400-functionalized dicationic acidic ionic liquids for highly efficient conversion of fructose into 5-hydroxymethylfurfural[J]. Catal. Lett., 2015,145:1080-1088. doi: 10.1007/s10562-015-1485-8
Yang Y., Abu-Omar M.M., Hu C.. Heteropolyacid catalyzed conversion of fructose sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate[J]. Appl. Energy, 2012,99:80-84. doi: 10.1016/j.apenergy.2012.04.049
Hu S., Zhang Z., Zhou Y.. Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials[J]. Green Chem., 2008,10:1280-1283. doi: 10.1039/b810392e
Zakrzewska M.E., Bogel-Ƚukasik E., Bogel-Ƚukasik R.. Ionic liquid-mediated formation of 5-hydroxymethylfurfural a promising biomass-derived building block[J]. Chem. Rev., 2011,111:397-417. doi: 10.1021/cr100171a
Tian J., Fang C., Cheng M.. Hydrolysis of cellulose over CsxH3-xPW12O40(X=1-3) heteropoly acid catalysts[J]. Chem. Eng. Technol., 2011,34:482-486. doi: 10.1002/ceat.201000409
Ståhlberg T., Fu W., Woodley J.M.. Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals[J]. Chemsuschem., 2011,4:451-458. doi: 10.1002/cssc.201000374
Amarasekara A.S., Williams L.T.D., Ebede C.C.. Mechanism of the dehydration of d fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 ℃: an NMR study[J]. Carbohydr. Res., 2008,343:3021-3024. doi: 10.1016/j.carres.2008.09.008
Kuster B.F.M.. 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture[J]. Starch-Stärke, 1990,42:314-321. doi: 10.1002/(ISSN)1521-379X
Kimura M.. Effect of water on hydrolytic cleavage of non-terminal α-glycosidic bonds in cyclodextrins to generate monosaccharides and their derivatives in a dimethyl sulfoxide-water mixture[J]. J. Phys. Chem. A, 2014,118:1309-1319.
Musau R.M., Munavu R.M.. The preparation of 5-hydroxymethyl-2-furaldehyde (HMF) from D-fructose in the presence of DMSO[J]. Biomass, 1987,13:67-74. doi: 10.1016/0144-4565(87)90072-2
Cao X., Teong S.P., Wu D.. An enzyme mimic ammonium polymer as a single catalyst for glucose dehydration to 5-hydroxymethylfurfural[J]. Green Chem., 2015,17:2348-2352. doi: 10.1039/C4GC02488E
Xiao S., Liu B., Wang Y.. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide?ionic liquid mixtures[J]. Bioresour. Technol., 2014,151:361-366. doi: 10.1016/j.biortech.2013.10.095
Liu S.W., Yu S.T., Liu F.S.. Reactions of a-pinene using acidic ionic liquids as catalysts[J]. J. Mol. Catal. A: Chem., 2008,279:177-181. doi: 10.1016/j.molcata.2007.06.026
Mirjafari A., Mobarrez N., Oa€?Brien R.A.. Microwave-promoted one-pot conversion of alcohols to oximes using 1-methylimidazolium nitrate[Hmim] [NO3], as a green promoter and medium[J]. C.R. Chim., 2011,14:1065-1070. doi: 10.1016/j.crci.2011.06.003
Ohno H., Yoshizawa M.. Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles[J]. Solid State Ionics, 2002,154:303-309.
Yan Q., Zang H., Wu C.. Synthesis, characterization and catalytic application of novel ionic liquids based on thiazolium cation[J]. J. Mol. Liq., 2015,204:156-161. doi: 10.1016/j.molliq.2015.01.016
Okuhara T., Watanabe H., Nishimura T.. Microstructure of cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis[J]. Chem. Mater., 2000,12:2230-2238. doi: 10.1021/cm9907561
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196