Citation: Gao Cunji, Zhu Hongmei, Chen Jia, Qiu Hongdeng. Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid[J]. Chinese Chemical Letters, ;2017, 28(5): 1006-1012. doi: 10.1016/j.cclet.2017.02.011 shu

Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid

  • Corresponding author: Qiu Hongdeng, hdqiu@licp.cas.cn
  • Received Date: 4 November 2016
    Revised Date: 30 December 2016
    Accepted Date: 17 February 2017
    Available Online: 6 May 2017

Figures(7)

  • In this work, a metal-organic frameworks material MIL-88 was prepared easily using solvent-thermal method, and was first found to have catalytic activities similar to those of biological enzymes such as catalase and peroxidase. The material was characterized by XRD, SEM, TEM, EDX, FT-IR techniques and an N2 adsorption method. It exhibited peroxidase-like activity through catalytic oxidation of the peroxidase substrate 3,3', 5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue-colored solution. Under optimal conditions, the absorbance at 652 nm is linearly correlated with the concentration of H2O2 from 2.0×10-6 mol/L to 2.03×10-5 mol/L (R2=0.981) with a detection limit of 5.62×10-7 mol/L (S/N=3). More importantly, a sensitive and selective method for ascorbic acid detection was developed using this material as a catalyst. The analytical method for ascorbic acid detection was observed to have a linear range from 2.57×10-6 mol/L to 1.01×10-5 mol/L (R2=0.989) with a detection limit of 1.03×10-6 mol/L (S/N=3). This work suggests MOFs have advantages of preparing biomimetic catalysts and extends applications of the functional MOFs in the field of biosensor.
  • 加载中
    1. [1]

      Gao L.Z., Wu J.M., Lyle S.. Magnetite nanoparticle-linked immunosorbent assay[J]. J. Phys. Chem.C, 2008,112:17357-17361. doi: 10.1021/jp805994h

    2. [2]

      Gao L.Z., Zhuang J., Nie L.. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nat. Nanotechnol., 2007,2:577-583. doi: 10.1038/nnano.2007.260

    3. [3]

      Mu J.S., Wang Y., Zhao M., Zhang L.. Intrinsic peroxidase-like activity and catalaselike activity of Co3O4 nanoparticles[J]. Chem. Commun., 2012,48:2540-2542. doi: 10.1039/c2cc17013b

    4. [4]

      Asati A., Santra S., Kaittanis C., Nath S., Perez J.M.. Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J]. Angew. Chem. Int. Ed., 2009,48:2308-2312. doi: 10.1002/anie.200805279

    5. [5]

      Su L., Feng J., Zhou X.M.. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles[J]. Anal. Chem., 2012,84:5753-5758. doi: 10.1021/ac300939z

    6. [6]

      André R., Natálio F., Humanes M.. V2O5 nanowires with an intrinsic peroxidase-like activity[J]. Adv. Funct. Mater., 2011,21:501-509. doi: 10.1002/adfm.v21.3

    7. [7]

      Shi W.B., Wang Q.L., Long Y.J.. Carbon nanodots as peroxidase mimetics and their applications to glucose detection[J]. Chem. Commum., 2011,47:6695-6697. doi: 10.1039/c1cc11943e

    8. [8]

      Song Y.J., Wang X.H., Zhao C.. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity[J]. Chemistry, 2010,16:3617-3621. doi: 10.1002/chem.200902643

    9. [9]

      Cui R.J., Han Z.D., Zhu J.J.. Helical carbon nanotubes:intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing[J]. Chemistry, 2011,17:9377-9384. doi: 10.1002/chem.v17.34

    10. [10]

      Song Y.J., Qu K.G., Zhao C., Ren J.S., Qu X.G.. Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Adv. Mater., 2010,22:2206-2210. doi: 10.1002/adma.v22:19

    11. [11]

      Lin T.R., Zhong L.S., Wang J.. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection[J]. Biosens. Bioelectron., 2014,59:89-93. doi: 10.1016/j.bios.2014.03.023

    12. [12]

      Dong Y.L., Zhang H.G., Rahman Z.U.. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose[J]. Nanoscale, 2012,4:3969-3976. doi: 10.1039/c2nr12109c

    13. [13]

      Xue T., Jiang S., Qu Y.Q.. Graphene-supported hemin as a highly active biomimetic oxidation catalyst[J]. Angew. Chem. Int. Ed., 2012,51:3822-3825. doi: 10.1002/anie.v51.16

    14. [14]

      Li B.L., Luo H.Q., Lei J.L., Li N.B.. Hemin-functionalized MoS2 nanosheets:enhanced peroxidase-like catalytic activity with a steady state in aqueous solution[J]. RSC Adv., 2014,4:24256-24262. doi: 10.1039/c4ra01746c

    15. [15]

      Chen Q., Chen J., Gao C.J.. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose[J]. Analyst, 2015,140:2857-2863. doi: 10.1039/C5AN00031A

    16. [16]

      Lin T.R., Zhong L.S., Song Z.P.. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets[J]. Biosens. Bioelectron., 2014,62:302-307. doi: 10.1016/j.bios.2014.07.001

    17. [17]

      Long Y.J., Li Y.F., Liu Y.. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles[J]. Chem. Commun., 2011,47:11939-11941. doi: 10.1039/c1cc14294a

    18. [18]

      Wei H., Wang E.K.. Fe3O4 Magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection[J]. Anal. Chem., 2008,80:2250-2254. doi: 10.1021/ac702203f

    19. [19]

      Ding N., Yan N., Ren C.L., Chen X.G.. Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-H2O2-ABTS detection system[J]. Anal. Chem., 2010,82:5897-5899. doi: 10.1021/ac100597s

    20. [20]

      Ma S.. Gas adsorption applications of porous metal-organic frameworks[J]. Pure Appl. Chem., 2009,81:2235-2251.  

    21. [21]

      Lee J.Y., Farha O.K., Roberts J.. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009,38:1450-1459. doi: 10.1039/b807080f

    22. [22]

      Rowsell J.L.C., Yaghi O.M.. Effects of functionalization catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks[J]. J. Am. Chem. Soc., 2006,128:1304-1315. doi: 10.1021/ja056639q

    23. [23]

      Gu Z.Y., Park J., Raiff A., Wei Z.W., Zhou H.C.. Metal-organic frameworks as biomimetic catalysts[J]. ChemCatChem, 2014,6:67-75. doi: 10.1002/cctc.v6.1

    24. [24]

      Sun Y.X., Sun W.Y.. Influence of temperature on metal-organic frameworks[J]. Chin. Chem. Lett., 2014,25:823-828. doi: 10.1016/j.cclet.2014.04.032

    25. [25]

      Hao L., Liu X.L., Wang J.T.. Metal-organic framework derived magnetic nanoporous carbon as an adsorbent for the magnetic solid-phase extraction of chlorophenols from mushroom sample[J]. Chin. Chem. Lett., 2016,27:783-788. doi: 10.1016/j.cclet.2016.01.021

    26. [26]

      Wang T., Liu Q.H., Gao Y.. A multi-responsive luminescent sensor towards Fe3+ and acetone based on a Cd-containing metal-organic framework[J]. Chin. Chem. Lett., 2016,27:497-501. doi: 10.1016/j.cclet.2016.01.011

    27. [27]

      Liu J.W., Chen L.F., Cui H.. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chem. Soc. Rev., 2014,43:6011-6061. doi: 10.1039/C4CS00094C

    28. [28]

      Feng D.W., Gu Z.Y., Li J.R.. Zirconium-metalloporphyrin PCN-222:mesoporousmetal-organic frameworks with ultrahigh stabilityas biomimetic catalysts[J]. Angew. Chem. Int. Ed., 2012,51:10307-10310. doi: 10.1002/anie.201204475

    29. [29]

      Ai L.H., Li L.L., Zhang C.H., Fu J., Jiang J.. MIL-53(Fe):a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing[J]. Chemistry, 2013,19:15105-15108. doi: 10.1002/chem.201303051

    30. [30]

      Zhang J.W., Zhang H.T., Du Z.Y.. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform[J]. Chem. Commun., 2014,50:1092-1094. doi: 10.1039/C3CC48398C

    31. [31]

      Serre C., Millange F., Surblé S., Férey G.. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units[J]. Angew. Chem. Int. Ed., 2004,43:6286-6289.  

    32. [32]

      Fateeva A., Horcajada P., Devic T.. Synthesis structure, characterization, and redox properties of the porous MIL-68(Fe) solid[J]. Eur. J. Inorg. Chem., 2010,2010:3789-3794. doi: 10.1002/ejic.201000486

    33. [33]

      Chattopadhyay K., Mazumdar S.. Structural and conformational stability of horseradish peroxidase:effect of temperature and pH[J]. Biochemistry, 2000,39:263-270. doi: 10.1021/bi990729o

    34. [34]

      Guo Y.J., Deng L., Li J.. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of singlenucleotide polymorphism[J]. ACS Nano, 2011,5:1282-1290. doi: 10.1021/nn1029586

  • 加载中
    1. [1]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    2. [2]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    4. [4]

      Qingyun Yang Yue Ma Quanyi Ye Yiqing Liu Yuhong Luo Yongbo Wu Zhiguang Xu Xiaoming Lin . Prussian blue analogues derived MO/MFe2O4 (M = Ni, Cu, Zn) nanoparticles as a high-performance anode material for enhanced lithium storage. Chinese Journal of Structural Chemistry, 2025, 44(8): 100631-100631. doi: 10.1016/j.cjsc.2025.100631

    5. [5]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    6. [6]

      Pengfu Gao Yuan Geng Wei Gong . Homochiral metal-organic frameworks bearing privileged ligands for heterogeneous asymmetric catalysis. Chinese Journal of Structural Chemistry, 2025, 44(10): 100719-100719. doi: 10.1016/j.cjsc.2025.100719

    7. [7]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    8. [8]

      Jun-Xian Chen Xian-Xian Xiao Libo Li Jinping Li Rui-Biao Lin Xiao-Ming Chen . Fine-tuning of Hofmann-type metal-organic frameworks for highly efficient separation of C4 olefins. Chinese Journal of Structural Chemistry, 2025, 44(12): 100744-100744. doi: 10.1016/j.cjsc.2025.100744

    9. [9]

      Luyao GuanZhaoxin WangShengkai LiPhouphien KeoingthongZhuo Chen . CoPt graphitic nanozyme enabled naked-eye identification and colorimetric/fluorescent dual-mode detection of phenylenediamine isomers. Chinese Chemical Letters, 2026, 37(2): 111323-. doi: 10.1016/j.cclet.2025.111323

    10. [10]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    11. [11]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    12. [12]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

    13. [13]

      Shan-Qing YangLu-Lu WangRajamani KrishnaBo XingLei ZhouFei-Yang ZhangQiang ZhangYi-Long LiChao-Sheng BaoTong-Liang Hu . Efficient C3H6/C3H8 separation within a bifunctional ultramicroporous metal-organic framework with high purity and record packing density. Chinese Chemical Letters, 2025, 36(12): 110556-. doi: 10.1016/j.cclet.2024.110556

    14. [14]

      Zhiqi Hu Lingling Wu Duo Zhang Yixue An Jiao Wang Binbin Zhao Robert Chunhua Zhao Rong Cao Xue Yang . Ultrathin transparent metal-organic framework-based nanocomposite membranes for antibacterial wound healing. Chinese Journal of Structural Chemistry, 2025, 44(12): 100749-100749. doi: 10.1016/j.cjsc.2025.100749

    15. [15]

      Mengjin Li Tian Xia Mengyu Wang Yujie Peng Sihan Zhang Xueliang Jiang Huan Yang . Biocarbon-Confined Bimetallic FeCo Metal-Organic Framework Orthogonal Nanosheet Arrays for Industry-level Ethylene Glycol Oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100627-100627. doi: 10.1016/j.cjsc.2025.100627

    16. [16]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    17. [17]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    18. [18]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    19. [19]

      Chao Wei Zi-Yi Zhao Jing-Jing Li Jinli Zhang Ming Lu Xiao-Qin Liu Guoliang Liu Jiandong Pang Lin-Bing Sun . Topology guided construction of MOF by linking Zr-MOLs with perylene diimide motifs for photocatalytic oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100625-100625. doi: 10.1016/j.cjsc.2025.100625

    20. [20]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

Metrics
  • PDF Downloads(3)
  • Abstract views(1413)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return