A novel aptasensor based on 3D-inorganic hybrid composite as immobilized substrate for sensitive detection of platelet-derived growth factor
- Corresponding author: Yang Yun-Hui, yyhui2002@aliyun.com
Citation:
Zhao Chun-Ling, Hua Mei, Yang Can-Yu, Yang Yun-Hui. A novel aptasensor based on 3D-inorganic hybrid composite as immobilized substrate for sensitive detection of platelet-derived growth factor[J]. Chinese Chemical Letters,
;2017, 28(7): 1417-1423.
doi:
10.1016/j.cclet.2017.02.010
Sun Y.H., Cai S., Lau C.W., Zhu J.H., Lu J.Z.. Novel PDGF aptasensor based on gold nanoparticle triggered chemiluminescence[J]. Procedia Eng., 2011,25:1565-1568. doi: 10.1016/j.proeng.2011.12.387
Bunka D.H.J., Stockley P.G.. Aptamers come of age—at last[J]. Nat. Rev. Microbiol., 2006,4:588-596. doi: 10.1038/nrmicro1458
Willner I., Zayats M.. Electronic aptamer-based sensors[J]. Angew. Chem. Int. Ed., 2007,46:6408-6418. doi: 10.1002/(ISSN)1521-3773
Ellington A.D., Szostak J.W.. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990,346:818-822. doi: 10.1038/346818a0
Tuerk C., Gold L.. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990,249:505-510. doi: 10.1126/science.2200121
Jayasena S.D.. Aptamers: an emerging class of molecules that rival antibodies in diagnostics[J]. Clin. Chem., 1999,45:1628-1650.
Patel D.J., Suri A.K.. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics[J]. Rev. Mol. Biotechnol., 2000,74:39-60. doi: 10.1016/S1389-0352(99)00003-3
Clark S.L., Remcho V.T.. Aptamers as analytical reagents[J]. Electrophoresis, 2002,23:1335-1340. doi: 10.1002/(ISSN)1522-2683
Luzi E., Minunni M., Tombelli S., Mascini M.. New trends in affinity sensing: aptamers for ligand binding[J]. TrAC Trends. Anal. Chem., 2003,22:810-818. doi: 10.1016/S0165-9936(03)01208-1
You K.M., Lee S.H., Im A., Lee S.B.. Aptamers as functional nucleic acids: in vitro selection and biotechnological applications[J]. Biotechnol. Bioprocess Eng., 2003,8:64-75. doi: 10.1007/BF02940259
Huang C.C., Huang Y.F., Cao Z.H., Tan W.H., Chang H.T.. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors[J]. Anal. Chem., 2005,77:5735-5741. doi: 10.1021/ac050957q
Huang B., Tong F.Y., Chen Y.T.. Fabrication and bioproperties of raspberrytype hybrid nanoparticles of Au-thioethyl pendant Ligand@Chitosan[J]. J. Biomed. Nanotechnol., 2013,9:115-123. doi: 10.1166/jbn.2013.1476
Leng C., Lai G.S., Yan F., Ju H.X.. Gold nanoparticle as an electrochemical label for inherently crosstalk-free multiplexed immunoassay on a disposable chip[J]. Anal. Chim. Acta, 2010,666:97-101. doi: 10.1016/j.aca.2010.03.060
Katiyar N., Selvakumar L.S., Patra S., Thaku M.S.. Gold nanoparticles based colorimetric aptasensor for theophylline[J]. Anal. Methods, 2013,5:653-659. doi: 10.1039/C2AY26133B
Tang D.P., Ren J.J.. In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels[J]. Anal. Chem., 2008,80:8064-8070. doi: 10.1021/ac801091j
Wiglusz R.J., Kedziora A., Lukowiak A., Doroszkiewicz W., Strek W.. Hydroxyapatites and europium(Ⅲ) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity[J]. J. Biomed. Nanotechnol., 2012,8:605-612. doi: 10.1166/jbn.2012.1424
Li F., Feng Y., Wang Z.. Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate?gold nanoparticles inorganic hybrid composite[J]. Biosens. Bioelectron., 2010,25:2244-2248. doi: 10.1016/j.bios.2010.03.006
Cai W.Y., Xu Q., Zhao X.N., Zhu J.J., Chen H.Y.. Porous gold-nanoparticle-CaCO3 hybrid material: preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry[J]. Chem. Mater., 2006,18:279-284. doi: 10.1021/cm051442i
Song X.F., Yang C., Wang J., Sun S.Y., Yu J.G.. Synthesis of porous hydromagnesite microspheres with rosette-like morphology[J]. Chin. J. Inorg. Chem., 2011,27:1008-1014.
Zhang H., Yin Y.J., Hu Y.J.. Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation[J]. J. Phys. Chem. C, 2010,114:11861-11867.
Fu X.M., Liu Z.J., Cai S.X.. Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters[J]. Chin. Chem. Lett., 2016,27:920-926. doi: 10.1016/j.cclet.2016.04.014
Degefa T.H., Kwak J.. Label-free aptasensor for platelet-derived growth factor (PDGF) protein[J]. Anal. Chim. Acta., 2008,613:163-168. doi: 10.1016/j.aca.2008.03.010
Lai R.Y., Plaxco K.W., Heeger A.J.. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum[J]. Anal. Chem., 2007,79:229-233. doi: 10.1021/ac061592s
Zhou L., Ou L.J., Chu X., Shen G.L., Yu R.Q.. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein[J]. Anal. Chem., 2007,79:7492-7500. doi: 10.1021/ac071059s
Zhang Y.L., Huang Y., Jiang J.H., Shen G.L., Yu R.Q.. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step reusable, sensitive protein detection[J]. J. Am. Chem. Soc., 2007,129:15448-15449. doi: 10.1021/ja0773047
Wang J., Meng W.Y., Zheng X.F., Liu S.L., Li G.X.. Combination of aptamer with gold nanoparticles for electrochemical signal amplification: application to sensitive detection of platelet-derived growth factor[J]. Biosens. Bioelectron., 2009,24:1598-1602. doi: 10.1016/j.bios.2008.08.030
Deng K., Xiang Y., Zhang L.Q., Chen Q.H., Fu W.L.. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry[J]. Anal. Chim. Acta., 2013,759:61-65. doi: 10.1016/j.aca.2012.11.018
Bai L.J., Yuan R., Chai Y.Q.. Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets[J]. Biomaterials, 2012,33:1090-1096. doi: 10.1016/j.biomaterials.2011.10.012
Chai Y., Tian D.Y., Gu J., Cui H.. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe[J]. Analyst., 2011,136:3244-3251. doi: 10.1039/c1an15298j
Yang X.H., Sun S., Liu P.. A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles[J]. Chin. Chem. Lett., 2014,25:9-14. doi: 10.1016/j.cclet.2013.10.032
Huang K.J., Liu Y.J., Zhai Q.F.. Ultrasensitive biosensing platform based on layered vanadium disulfide-graphene composites coupling with tetrahedronstructured DNA probes and exonuclease Ⅲ assisted signal amplification[J]. J. Mater. Chem. B, 2015,3:8180-8187. doi: 10.1039/C5TB01239B
Huang K.J., Shuai H.L., Zhang J.Z.. Ultrasensitive sensing platform for plateletderived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease Ⅲ assisted signal amplification[J]. Biosens Bioelectron., 2016,77:69-75. doi: 10.1016/j.bios.2015.09.026
Fang L.X., Huang K.J., Liu Y.. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification[J]. Biosens. Bioelectron., 2015,71:171-178. doi: 10.1016/j.bios.2015.04.031
Doron A., Katz E., Willner I.. Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers[J]. Langmuir, 1995,11:1313-1317. doi: 10.1021/la00004a044
He W., Liu J.Y., Qiao Y.J.. Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction[J]. J. Power Sources, 2010,195:1046-1050. doi: 10.1016/j.jpowsour.2009.09.006
Xu J.B., Zhao T.S., Liang Z.X.. Carbon supported platinum?gold alloy catalyst for direct formic acid fuel cells[J]. J. Power Sources, 2008,185:857-861. doi: 10.1016/j.jpowsour.2008.09.039
Yi Q.F., Yu W.Q., Niu F.J.. Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation[J]. Electroanalsis, 2010,22:556-563. doi: 10.1002/elan.v22:5
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
Weihong Ding , Kaiyue Song , Xianglong Li , Xiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942