Citation: Guo Yong, Huang Mei-Wei, Fu Xiao-Lin, Liu Chao, Chen Qing-Yun, Zhao Zhi-Gang, Zeng Ben-Zhong, Chen Jiong. Recent catalytic syntheses of trifluoromethylthio-containing organic compounds by transition metals, chiral organocatalysts, and photocatalysts[J]. Chinese Chemical Letters, ;2017, 28(4): 719-728. doi: 10.1016/j.cclet.2017.02.006 shu

Recent catalytic syntheses of trifluoromethylthio-containing organic compounds by transition metals, chiral organocatalysts, and photocatalysts

  • Corresponding author: Guo Yong, yguo@sioc.ac.cn Chen Qing-Yun, chenqy@sioc.ac.cn Zhao Zhi-Gang, zzg63129@163.com
  • Received Date: 15 November 2016
    Revised Date: 19 January 2017
    Accepted Date: 13 February 2017
    Available Online: 15 April 2017

Figures(22)

  • This review summarizes the recent advances in the catalytic syntheses of CF3S-containing organic molecules using various nucleophilic or electrophilic trifluoromethylthiolating reagents.C-halogen and C-H bonds in various molecules have been transformed to C-SCF3 bonds by transition-metal-catalyzed reactions, such as cross-coupling of aryl halides.Enantioselective reactions controlled by chiral metal complexes or chiral organocatalysts have afforded many trifluoromethylthiolated chiral architectures, such as β-ketoesters and oxindoles.Very recently, visible-light-induced photoredox trifluoromethylth-iolations have been developed, providing versatile CF3S-containing structures efficiently.
  • 加载中
    1. [1]

      (a)X. H. Xu, K. Matsuzaki, N. Shibata, Synthetic methods for compounds having CF3-S units on carbon by trifluoromethylation, trifluoromethylthiolation, triflylation, and related reactions, Chem. Rev. 115(2015)731-764;
      (b)C. Hansch, A. Leo, S. H. Unger, et al. , "Aromatic"substituent constants for structure-activity correlations, J. Med. Chem. 16(1973)1207-1216;
      (c)F. Leroux, P. Jeschke, M. Schlosser, α-Fluorinated ethers, thioethers, and amines: anomerically biased species, Chem. Rev. 105(2005)827-856;
      (d)G. Landelle, A. Panossian, F. R. Leroux, Trifluoromethyl ethers and -thioethers as tools for Medicinal chemistry and drug discovery, Curr. Top. Med. Chem. 14(2014)941-951.

    2. [2]

      Zheng H., Huang Y., Weng Z.. Recent advances in trifluoromethylthiolation using nucleophilic trifluoromethylthiolating reagents[J]. Tetrahedron Lett., 2016,57:1397-1409. doi: 10.1016/j.tetlet.2016.02.073

    3. [3]

      Chachignon H., Cahard D.. State-of-the-art in electrophilic trifluoromethylthiolation reagents[J]. Chin.J.Chem., 2016,34:445-454. doi: 10.1002/cjoc.v34.5

    4. [4]

      Shao X., Xu C., Lu L., Shen Q.. Shelf-stable electrophilic reagents for trifluoromethylthiolation[J]. Acc.Chem.Res., 2015,48:1227-1236. doi: 10.1021/acs.accounts.5b00047

    5. [5]

      Zhang K., Xu X., Qing F.. Recent advances of direct trifluoromethylthiolation[J]. Chin.J.Org.Chem., 2015,35:556-569. doi: 10.6023/cjoc201501017

    6. [6]

      Toulgoat F., Alazet S., Billard T.. Direct trifluoromethylthiolation reactions:the "renaissanceq" of an old concept[J]. Eur.J.Org.Chem., 2014,2014:2415-2428. doi: 10.1002/ejoc.201301857

    7. [7]

      Teverovskiy G., Surry D.S., Buchwald S.L.. Pd-catalyzed synthesis of Ar-SCF3 compounds under mild conditions[J]. Angew.Chem.Int.Ed., 2011,50:7312-7314. doi: 10.1002/anie.v50.32

    8. [8]

      Yin G., Kalvet I., Schoenebeck F.. Trifluoromethylthiolation of aryl iodides and bromides enabled by a bench-stable and easy-to-recover dinuclear palladium (Ⅰ)catalyst[J]. Angew.Chem.Int.Ed., 2015,54:6809-6813. doi: 10.1002/anie.201501617

    9. [9]

      Zhang C.P., Vicic D.A.. Nickel-catalyzed synthesis of aryl trifluoromethyl sulfides at room temperature[J]. J.Am.Chem.Soc., 2012,134:183-185. doi: 10.1021/ja210364r

    10. [10]

      Yin G., Kalvet I., Englert U., Schoenebeck F.. Fundamental studies and development of nickel-catalyzed trifluoromethylthiolation of aryl chlorides: active catalytic species and key roles of ligand and traceless MeCN additive revealed[J]. J.Am.Chem.Soc., 2015,137:4164-4172. doi: 10.1021/jacs.5b00538

    11. [11]

      Dürr A.B., Yin G., Kalvet I., Napoly F., Schoenebeck F.. Nickel-catalyzed trifluoromethylthiolation of Csp2-O bonds[J]. Chem.Sci., 2016,7:1076-1081. doi: 10.1039/C5SC03359D

    12. [12]

      Nguyen T., Chiu W., Wang X., Sattler M.O., Love J.A.. Ligandless nickel-catalyzed ortho-selective directed trifluoromethylthiolation of aryl chlorides and bromides using AgSCF3[J]. Org.Lett., 2016,18:5492-5495. doi: 10.1021/acs.orglett.6b02689

    13. [13]

      Xu J., Mu X., Chen P., Ye J., Liu G.. Copper-catalyzed trifluoromethylthiolation of aryl halides with diverse directing groups[J]. Org.Lett., 2014,16:3942-3945. doi: 10.1021/ol501742a

    14. [14]

      Yin W., Wang Z., Huang Y.. Highly ortho-selective trifluoromethylthiolation reactions using a ligand exchange strategy[J]. Adv.Synth.Catal., 2014,356:2998-3006. doi: 10.1002/adsc.201400362

    15. [15]

      Chen C., Xu X.H., Yang B., Qing F.L.. Copper-catalyzed direct trifluoromethylthiolation of benzylic C-H bonds via nondirected oxidative C (sp3)-H activation[J]. Org.Lett., 2014,16:3372-3375. doi: 10.1021/ol501400u

    16. [16]

      Ye K.Y., Zhang X., Dai L.X., You S.L.. Ruthenium-catalyzed regioselective allylic trifluoromethylthiolation reaction[J]. J.Org.Chem., 2014,79:12106-12110. doi: 10.1021/jo5019393

    17. [17]

      Saravanana P., Anbarasan P.. Copper-catalyzed trifluoromethylthiolation of di(hetero)aryl-λ3-iodanes:mechanistic insight and application to synthesis of (hetero)aryl trifluoromethyl sulfides[J]. Adv.Synth.Catal., 2015,357:3521-3528. doi: 10.1002/adsc.201500606

    18. [18]

      (a)G. Danoun, B. Bayarmagnai, M. F. Gruenberg, L. J. Goossen, Sandmeyer trifluoromethylthiolation of arenediazonium salts with sodium thiocyanate and Ruppert-Prakash reagent, Chem. Sci. 5(2014)1312-1316;
      (b)B. Bayarmagnai, C. Matheis, E. Risto, L. J. Goossen, One-pot Sandmeyer trifluoromethylation and trifluoromethylthiolation, Adv. Synth. Catal. 356 (2014)2343-2348.

    19. [19]

      Xiao Q., Sheng J., Ding Q., Wu J.. Facile assembly of 1-[(trifluoromethyl)thio]isoquinolines through eeaction of 2-alkynylbenzaldoxime with silver (trifluoromethyl)thiolate[J]. Eur.J.Org.Chem., 2014,2014:217-221. doi: 10.1002/ejoc.v2014.1

    20. [20]

      Tran L.D., Popov I., Daugulis O.. Copper-promoted sulfenylation of sp2 C-H bonds[J]. J.Am.Chem.Soc., 2012,134:18237-18240. doi: 10.1021/ja3092278

    21. [21]

      Xu C., Shen Q.. Palladium-catalyzed trifluoromethylthiolation of aryl C-H bonds[J]. Org.Lett., 2014,16:2046-2049. doi: 10.1021/ol5006533

    22. [22]

      Wang Q., Xie F., Li X.. Rh(Ⅲ)-catalyzed trifluoromethylthiolation of indoles via C-H activation[J]. J.Org.Chem., 2015,80:8361-8366. doi: 10.1021/acs.joc.5b00940

    23. [23]

      Xiong H.Y., Besset T., Cahard D., Pannecoucke X.. Palladium(Ⅱ)-catalyzed directed trifluoromethylthiolation of unactivated C(sp3)-H bonds[J]. J.Org.Chem., 2015,80:4204-4212. doi: 10.1021/acs.joc.5b00505

    24. [24]

      Shao X., Wang X., Yang T., Lu L., Shen Q.. An electrophilic hypervalent iodine reagent for trifluoromethylthiolation[J]. Angew.Chem.Int.Ed., 2013,52:3457-3460. doi: 10.1002/anie.v52.12

    25. [25]

      Shao X., Xu C., Lu L., Shen Q.. Structure-reactivity relationship of trifluoromethanesulfenates:discovery of an electrophilic trifluoromethylthiolating reagent[J]. J.Org.Chem., 2015,80:3012-3021. doi: 10.1021/jo502645m

    26. [26]

      Pluta R., Nikolaienko P., Rueping M. Direct catalytic trifluoromethylthiolation of boronic acids and alkynes employing electrophilic shelf-stable N-(trifluoromethylthio)phthalimide[J]. Angew.Chem.Int.Ed., 2014,53:1650-1653. doi: 10.1002/anie.201307484

    27. [27]

      Kang K., Xu C., Shen Q.. Copper-catalyzed trifluoromethylthiolation of aryl and vinyl boronic acids with a shelf-stable electrophilic trifluoromethylthiolating reagent[J]. Org.Chem.Front., 2014,1:294-297. doi: 10.1039/c3qo00068k

    28. [28]

      Glenadel Q., Alazet S., Tlili A., Billard T.. Mild and soft catalyzed trifluoromethylthiolation of boronic acids:the crucial role of water[J]. Chem. Eur.J., 2015,21:14694-14698. doi: 10.1002/chem.201502338

    29. [29]

      Shao X., Liu T., Lu L., Shen Q.. Copper-catalyzed trifluoromethylthiolation of primary and secondary alkylboronic acids[J]. Org.Lett., 2014,16:4738-4741. doi: 10.1021/ol502132j

    30. [30]

      Tlili A., Alazet S., Glenadel Q., Billard T.. Copper-catalyzed perfluoroalkylthiolation of alkynes with perfluoroalkanesulfenamides[J]. Chem.Eur.J., 2016,22:10230-10234. doi: 10.1002/chem.201601338

    31. [31]

      Li Y., Ye Z., Bellman T.M., Chi T., Dai M.. Efficient synthesis of ǂ-CF3/SCF3-substituted carbonyls via copper-catalyzed electrophilic ring-opening cross-coupling of cyclopropanols[J]. Org.Lett., 2015,17:2186-2189. doi: 10.1021/acs.orglett.5b00782

    32. [32]

      Hu F., Shao X., Zhu D., Lu L., Shen Q.. Silver-catalyzed decarboxylative trifluoromethylthiolation of aliphatic carboxylic acids in aqueous emulsion[J]. Angew.Chem.Int.Ed., 2014,53:6105-6109. doi: 10.1002/anie.201402573

    33. [33]

      (a)Y. D. Yang, A. Azuma, E. Tokunaga, et al. , Trifluoromethanesulfonyl hypervalent iodonium ylide for copper-catalyzed trifluoromethylthiolation of enamines, indoles, and b-keto esters, J. Am. Chem. Soc. 135(2013)8782-8785;
      (b)S. Arimori, M. Takada, N. Shibata, Trifluoromethylthiolation of allylsilanes and silyl enol ethers with trifluoromethanesulfonyl hypervalent iodonium ylide under copper catalysis, Org. Lett. 17(2015)1063-1065;
      (c)S. Arimori, M. Takada, N. Shibata, Reactions of allyl alcohols and boronic acids with trifluoromethanesulfonyl hypervalent iodonium ylide under copper-catalysis, Dalton Trans. 44(2015)19456-19459;
      (d)Z. Huang, Y. D. Yang, E. Tokunaga, N. Shibata, Copper-catalyzed regioselective trifluoromethylthiolation of pyrroles by trifluoromethanesulfonyl hypervalent iodonium ylide, Org. Lett. 17(2015) 1094-1097;
      (e)Z. Huang, Y. D. Yang, E. Tokunaga, N. Shibata, Synthesis of Billard-Langlois reagents and their derivatives by copper-catalyzed N-trifluoromethylthiolation of arylamines with a trifluoromethanesulfonyl hypervalent iodonium ylide, Asian J. Org. Chem. 4(2015)525-527.

    34. [34]

      Wang X., Yang T., Cheng X., Shen Q.. Enantioselective electrophilic trifluoromethylthiolation of β-ketoesters:a case of reactivity and selectivity bias for organocatalysis[J]. Angew.Chem.Int.Ed., 2013,52:12860-12864. doi: 10.1002/anie.201305075

    35. [35]

      Bootwicha T., Liu X., Pluta R., Atodiresei I., Rueping M.. N-trifluoromethylthiophthalimide:a stable electrophilic SCF3-reagent and its application in the catalytic asymmetric trifluoromethylsulfenylation[J]. Angew. Chem.Int.Ed., 2013,52:12856-12859. doi: 10.1002/anie.201304957

    36. [36]

      Deng Q.H., Rettenmeier C., Wadepohl H., Gade L.H.. Copper-boxmi complexes as highly enantioselective catalysts for electrophilic trifluoromethylthiolations[J]. Chem.Eur.J., 2014,20:93-97. doi: 10.1002/chem.201303641

    37. [37]

      Rueping M., Liu X., Bootwicha T., Pluta R., Merkens C.. Catalytic enantioselective trifluoromethylthiolation of oxindoles using shelf-stable N-(trifluoromethylthio)phthalimide and a cinchona alkaloid catalyst[J]. Chem. Commun., 2014,50:2508-2511. doi: 10.1039/c3cc49877h

    38. [38]

      Yang T., Shen Q., Lu L.. Chincona alkaloid-catalyzed enantioselective trifluoromethylthiolation of oxindoles[J]. Chin.J.Chem., 2014,32:678-680. doi: 10.1002/cjoc.201400392

    39. [39]

      Zhu X.L., Xu J.H., Cheng D.J.. In situ generation of electrophilic trifluoromethylthio reagents for enantioselective trifluoromethylthiolation of oxindoles[J]. Org.Lett., 2014,16:2192-2195. doi: 10.1021/ol5006888

    40. [40]

      Hu L., Wu M., Wan H.. Efficient catalytic α-trifluoromethylthiolation of aldehydes[J]. New J.Chem., 2016,40:6550-6553. doi: 10.1039/C6NJ01082B

    41. [41]

      Liu X., An R., Zhang X., Luo J., Zhao X.. Enantioselective trifluoromethylthiolating lactonization catalyzed by an indane-based chiral sulfide[J]. Angew.Chem.Int.Ed., 2016,55:5846-5850. doi: 10.1002/anie.201601713

    42. [42]

      Q. Shen, L. Lu, P. Zhang, C. Xu, A trifluoromethylthiolating reagent, its preparation and application CN 105985266 A.

    43. [43]

      Honeker R., R.A.Garza-Sanchez , Hopkinson M.N., Glorius F.. Visible-light-promoted trifluoromethylthiolation of styrenes by dual photoredox/halide catalysis[J]. Chem.Eur.J., 2016,22:4395-4399. doi: 10.1002/chem.v22.13

    44. [44]

      Candish L., Pitzer L., Gómez-Suárez A., Glorius F.. Visible light-promoted decarboxylative di-and trifluoromethylthiolation of alkyl carboxylic acids[J]. Chem.Eur.J., 2016,22:4753-4756. doi: 10.1002/chem.v22.14

    45. [45]

      Mukherjee S., Maji B., Tlahuext-Aca A., Glorius F.. Visible-light-promoted activation of unactivated C(sp3)-H bonds and their selective trifluoromethylthiolation[J]. J.Am.Chem.Soc., 2016,138:16200-16203. doi: 10.1021/jacs.6b09970

  • 加载中
    1. [1]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    2. [2]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    3. [3]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    4. [4]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    5. [5]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    6. [6]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    7. [7]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    8. [8]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    9. [9]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    10. [10]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    11. [11]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    14. [14]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    15. [15]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    18. [18]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    19. [19]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    20. [20]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

Metrics
  • PDF Downloads(1)
  • Abstract views(764)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return