Citation: Konkala Veera Swamy, Dubey Pramod Kumar. Sulfamic acid as a green, reusable catalyst for stepwise, tandem & one-pot solvent-free synthesis of pyrazole derivatives[J]. Chinese Chemical Letters, ;2017, 28(7): 1571-1576. doi: 10.1016/j.cclet.2017.02.005 shu

Sulfamic acid as a green, reusable catalyst for stepwise, tandem & one-pot solvent-free synthesis of pyrazole derivatives

  • Corresponding author: Dubey Pramod Kumar, veeruchem06@gmail.com
  • Received Date: 7 November 2016
    Revised Date: 23 January 2017
    Accepted Date: 13 February 2017
    Available Online: 22 July 2017

Figures(7)

  • Sulfamic acid (SA) is a bi-functional, cost-effective and reusable green catalyst for the synthesis of 4-(pyrazol-4-yl)methylenepyrazol-5(4H)-one derivatives by one-pot, three-component condensation of pyrazol-4-carbaxaldehydes, β-ketoesters and phenyl hydrazine (Route-I). In addition to this method, another simple condensation of pyrazol-4-carbaxaldehydes with pyrazolone in the presence of SA under the solvent-free condition in good yield is reported. The merits of these protocols are mild conditions, non-aqueous workup, high yields, easy availability of the catalyst, no chromatographic separation and inexpensive solid acid catalyst. Furthermore, SA could be recycled and reused for five times without losing its catalytic activity.
  • 加载中
    1. [1]

      Wahaba B.F., Abdel E., Mohameda H.A.. Design and synthesis of new 4-pyrazolin-yl-1, 2, 3-triazoles and 1, 2, 3-triazol-4-yl-pyrazolin-1-yl-thiazoles as potential antimicrobial agents[J]. Eur. J. Med. Chem., 2012,52:263-268. doi: 10.1016/j.ejmech.2012.03.023

    2. [2]

      Magedov I.V., Manpadi M., Van S.S.. Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis[J]. J. Med. Chem., 2007,50:5183-5192. doi: 10.1021/jm070528f

    3. [3]

      Rovnyak G.C., Millonig R.C., Schwartz J., Shu V.J.. Synthesis and antiinflammatory activity of hexahydrothiopyrano[4, 3-c] pyrazoles and related analogs[J]. J. Med. Chem., 1982,25:1482-1488. doi: 10.1021/jm00354a018

    4. [4]

      Palaska E., Aytemir M., Uzbay I.T., Erol D.. Synthesis and antidepressant activities of some 3, 5-diphenyl-2-pyrazolines[J]. Eur. J. Med. Chem., 2001,36:539-543. doi: 10.1016/S0223-5234(01)01243-0

    5. [5]

      Sener A., Sener M.K., Bildmci I., Kasimogullari R., Akcamur Y.. Studies on the reactions of cyclic oxalyl compounds with hydrazines or hydrazones: synthesis and reactions of 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1Hpyrazole-3-carboxylic acid[J]. J. Heterocycl. Chem., 2002,39:869-875. doi: 10.1002/jhet.v39:5

    6. [6]

      Liu X.H., Cui P., Song B.A.. Synthesis structure and antibacterial activity of novel 1-(5-substituted-3-substituted-4, 5-dihydropyrazol-1-yl)ethanone oxime ester derivatives[J]. Bioorg. Med. Chem., 2008,16:4075-4082. doi: 10.1016/j.bmc.2008.01.035

    7. [7]

      Akbas E., Berber I.. Antibacterial and antifungal activities of new pyrazolo[3, 4-d]pyridazin derivatives[J]. Eur. J. Med. Chem., 2005,40:401-405. doi: 10.1016/j.ejmech.2004.12.001

    8. [8]

      Wachter G.A., Hartmann R.W., Sergejew T., Grun G.L., Ledergerber D.. Tetrahydronaphthalenes: influence of heterocyclic substituents on inhibition of steroidogenic enzymes P450 arom and P45017[J]. J. Med. Chem., 1996,39:834-841. doi: 10.1021/jm950377t

    9. [9]

      Rostoma S.A., Shalaby M.A., Demellawy M.A.. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents[J]. Eur. J. Med. Chem, 2003,38:959-974. doi: 10.1016/j.ejmech.2003.08.003

    10. [10]

      Dias L.R., Salvador R.R.S.. Pyrazole carbohydrazide derivatives of pharmaceutical interest[J]. Pharmaceuticals, 2012,5:317-324. doi: 10.3390/ph5030317

    11. [11]

      Conchona E., Aboaba B., Roy M.. Synthesis in vitro antiproliferative activities, and Chk1 inhibitory properties of indolylpyrazolones and indolylpyridazinedione[J]. Eur. J. Med. Chem., 2006,41:1470-1477. doi: 10.1016/j.ejmech.2006.06.012

    12. [12]

      Manojkumar P., Ravi T.K., Gopalakrishnan S.. Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety[J]. Eur. J. Med. Chem., 2009,44:4690-4694. doi: 10.1016/j.ejmech.2009.07.004

    13. [13]

      Ragavana R.V., Vijayakumara V., Kumari N.S.. Synthesis of some novel bioactive 4-oxy/thio substituted-1H-pyrazol-5(4H)-ones via efficient cross-Claisen condensation[J]. Eur. J. Med. Chem., 2009,44:3852-3857. doi: 10.1016/j.ejmech.2009.04.010

    14. [14]

      Zimmermann D., Janin Y.L., Brehm L.. 3-Pyrazolone analogues of the 3-isoxazolol metabotropic excitatory amino acid receptor agonist homo-AMPA. Synthesis and pharmacological testing[J]. Eur. J. Med. Chem, 1999,34:967-976. doi: 10.1016/S0223-5234(99)00122-1

    15. [15]

      Dube P.N., Bule S.S., Yogesh V., Manoj R.U., Pravin K.R.. Synthesis of novel 5-methyl pyrazol-3-one derivatives and their in vitro cytotoxic evaluation[J]. Med. Chem. Res., 2015,24:1070-1076. doi: 10.1007/s00044-014-1201-z

    16. [16]

      Shamsuzzaman A., Mashrai A., Anis M.A., Dar H., Khanam M., Danishuddin , Khan A. U.. Synthesis, evaluation and docking studies on steroidal pyrazolones as anticancer and antimicrobial agents[J]. Med. Chem. Res., 2014,23:348-362. doi: 10.1007/s00044-013-0636-y

    17. [17]

      Lanke S.K., Sekar N.. Pyrazole based solid state emissive NLOphores with TICT characteristics: Synthesis, DFT and TDDFT studies[J]. Dyes Pigm., 2016,126:62-75. doi: 10.1016/j.dyepig.2015.11.014

    18. [18]

      Hangarge R.V., Shingare M.S.. Environmentally benign synthesis of 3-methyl-4-[(1, 3-diphenyl-1H-pyrazol-4-yl)-methylene]-1-phenylpyrazolin-5-(4H) ones in an ionic liquid[J]. Mendeleev Commun., 2003,13:79-80. doi: 10.1070/MC2003v013n02ABEH001721

    19. [19]

      Chobe, Bhaskar, Dawane, Khaled. An ecofriendly synthesis and DNA binding interaction study of some pyrazolo [1, 5-a] pyrimidines derivatives[J]. Bioorg. Med. Chem. Lett., 2012,22:7566-7572. doi: 10.1016/j.bmcl.2012.10.027

    20. [20]

      Santosh S.S., Balaji M.R., Hangarge R.V., Patil P.T., Dongare M.K., Shingare M.S.. Borate Zirconia Mediated Knoevenagel Condensation Reaction in Water[J]. J. Kor. Chem. Soc, 2005,49(4):377-380. doi: 10.5012/jkcs.2005.49.4.377

    21. [21]

      Toure B.B., Hall D.G.. Natural product synthesis using multicomponent reaction strategies[J]. Chem. Rev., 2009,109:4439-4486. doi: 10.1021/cr800296p

    22. [22]

      Bondock S., Fadaly W., Metwally M.A.. Recent trends in the chemistry of 2-aminobenzothiazoles[J]. J. Sulfur Chem., 2009,30:74-107. doi: 10.1080/17415990802588033

    23. [23]

      Ganem B.. Strategies for innovation in multicomponent reaction design[J]. Acc. Chem. Res., 2009,42:463-472. doi: 10.1021/ar800214s

    24. [24]

      Domling A.. Recent developments in isocyanide based multicomponent reactions in applied chemistry[J]. Chem. Rev., 2006,106:17-89. doi: 10.1021/cr0505728

    25. [25]

      Tanaka K., Toda F.. Solvent-free organic synthesis[J]. Chem. Rev., 2016,100:1025-1074.  

    26. [26]

      Toda F.. Solid state organic reactions[J]. Synlett, 1993,5:303-312.  

    27. [27]

      Centi G., Ciambelli P., Perathoner S., Russo P.. Environmental catalysis: trends and outlook[J]. Catal. Today, 2002,75:3-15. doi: 10.1016/S0920-5861(02)00037-8

    28. [28]

      Nagarajan R., Magesh C.J., Perumal P.T.. Inter-and intramolecular imino DielsAlder reactions catalyzed by sulfamic acid: a mild and efficient catalyst for a one-pot synthesis of tetrahydroquinolines[J]. Synthesis, 2004,1:69-74.  

    29. [29]

      Xia M., Lu Y.D.. A novel direct and one-pot Mannich synthesis of fluorinated β-aminobutanones with sulfamic acid as a green catalyst[J]. J. Fluorine Chem., 2006,127:1119-1124. doi: 10.1016/j.jfluchem.2006.05.020

    30. [30]

      Mitragotri S.D., Pore D.M., Desai U.V., Wadgaonkar P.P.. Sulfamic acid: An efficient and cost-effective solid acid catalyst for the synthesis of β-aminophosphonates at ambient temperature[J]. Catal. Commun., 2008,9:1822-1826. doi: 10.1016/j.catcom.2008.02.011

    31. [31]

      Wu L., Ma S., Yan F., Yang C.. Sulfamic-acid-catalyzed simple and efficient synthesis of 4-aryl-3-methyl-1-phenyl-H-benzo[g]pyrazolo[3, 4-b] quinoline-5, 10-diones under solvent-free conditions[J]. Monatsh. Chem., 2010,141:565-568. doi: 10.1007/s00706-010-0282-8

    32. [32]

      Zakerinasab B., Nasseri M.A., Hassani H., Samieadel M.M.. Application of Fe3O4@SiO2@sulfamic acid magneticnanoparticles as recyclable heterogeneous catalystfor the synthesis of imine and pyrazole derivativesin aqueous medium[J]. Res. Chem. Intermed., 2016,42:3169-3181. doi: 10.1007/s11164-015-2204-1

    33. [33]

      Sandeep V., Wamanrao N., Jeevan M.K., Sumit V.G., Nandkishor N.K.. Sulfamic acid catalysed one-pot three-component condensation for the synthesis of 1, 4-dihydropyrano[2, 3-c]pyrazoles[J]. J. Chem. Res., 2008,2008:278-279. doi: 10.3184/030823408X321051

    34. [34]

      Li J.P., Qiu J.K., Li H.J., Zhang G.S.. An efficient three-component one-pot preparation of 1, 4-dihydropyridines containing novel substituted pyrazole under su lfamic acid catalysis[J]. Chin. J. Chem., 2011,29:511-514. doi: 10.1002/cjoc.201190114

    35. [35]

      Shetty M.R., Shriniwas S.D.. Sulfamic acid (H2NSO3H): a low-cost, mild, and efficient catalyst for the synthesis of substituted n-phenylpyrazoles under solvent-free conditions[J]. Synth. comm., 2012,42:1411-1418. doi: 10.1080/00397911.2010.540365

  • 加载中
    1. [1]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    2. [2]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    3. [3]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    4. [4]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    5. [5]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    6. [6]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    7. [7]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    11. [11]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    12. [12]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    13. [13]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    14. [14]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    15. [15]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    16. [16]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    17. [17]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    18. [18]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    19. [19]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    20. [20]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

Metrics
  • PDF Downloads(5)
  • Abstract views(677)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return