Citation: Chang Kang, Chen Jian-Qin, Shi Yan-Xia, Sun Mei-Jian, Li Peng-Fei, Zhao Zhen-Jiang, Zhu Wei-Ping, Li Hong-Lin, Xu Yu-Fang, Li Bao-Ju, Qian Xu-Hong. The discovery of new scaffold of plant activators: From salicylic acid to benzotriazole[J]. Chinese Chemical Letters, ;2017, 28(4): 919-926. doi: 10.1016/j.cclet.2017.02.004 shu

The discovery of new scaffold of plant activators: From salicylic acid to benzotriazole

Figures(7)

  • Started from salicylic acid(SA)and related commercialized plant activators, based on molecular three-dimensional shape and pharmacophore similarity comparison(SHAFTS), a new lead compound benzotriazole was predicted and a series of benzotriazole derivatives were designed and synthesized.The bioassay showed that benzotriazole had high activity against a broad spectrum of diseases including fungi and oomycetes in vivo, but no activity in vitro.And the introduction of proper groups at the 1'-position and 5'-position was beneficial to the activity.So, they had the potential to be exploited as novel plant activators.
  • 加载中
    1. [1]

      Wang X., Li P., Li Z.N.. Synthesis and bioactivity evaluation of novel arylimines containing a 3-aminoethyl-2-[(p-trifluoromethoxy)anilino] -4(3H)-quinazolinone moiety[J]. J.Agric.Food.Chem., 2013,61:9575-9582.  

    2. [2]

      Kessmann H., Staub T., Hofmann C.. Induction of systemic acquired disease resistance in plants by chemicals[J]. Annu.Rev.Phytopathol., 1994,32:439-459. doi: 10.1146/annurev.py.32.090194.002255

    3. [3]

      Du Q.S., Shi Y.X., Li P.F.. Novel plant activators with thieno[2, 3-d] -1, 2, 3-thiadiazole-6-carboxylate scaffold:synthesis and bioactivity[J]. Chin.Chem.Lett., 2013,24:967-969. doi: 10.1016/j.cclet.2013.07.003

    4. [4]

      Du Q.S., Zhu W.P., Zhao Z.J., Qian X.H., Xu Y.F. Novel benzo-1, 2, 3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications[J]. J.Agric.Food.Chem., 2012,60:346-353. doi: 10.1021/jf203974p

    5. [5]

      Jones J.D.G., Dangl J.L. The plant immune system[J]. Nature, 2006,444:323-329. doi: 10.1038/nature05286

    6. [6]

      Durrant W.E., Dong X. Systemic acquired resistance[J]. Annu.Rev.Phytopathol., 2004,42:185-209. doi: 10.1146/annurev.phyto.42.040803.140421

    7. [7]

      Gozzo F. Systemic acquired resistance in crop protection:from nature to a chemical approach[J]. J.Agric.Food.Chem., 2003,51:4487-4503. doi: 10.1021/jf030025s

    8. [8]

      Gozzo F., Faoro F. Systemic acquired resistance(50 years after discovery): moving from the lab to the field[J]. J.Agric.Food.Chem., 2013,61:12473-12491. doi: 10.1021/jf404156x

    9. [9]

      Ryals J.A., Neuenschwander U.H., Willits M.G.. Systemic acquired resistance[J]. Plant Cell, 1996,8:1809-1819. doi: 10.1105/tpc.8.10.1809

    10. [10]

      Pieterse C.M.J., Leon-Reyes A., Van der Ent S., Van Wees S.C.M.. Networking by small-molecule hormones in plant immunity[J]. Nat.Chem.Biol., 2009,5:308-316. doi: 10.1038/nchembio.164

    11. [11]

      Park S.W., Kaimoyo E., Kumar D., Mosher S., Klessig D.F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance[J]. Science, 2007,318:113-116. doi: 10.1126/science.1147113

    12. [12]

      Gao Q.M., Zhu S.F., Kachroo P., Kachroo A. Signal regulators of systemic acquired resistance[J]. Front.Plant Sci., 2015,6228.  

    13. [13]

      Graham J.H., Myers M.E. Evaluation of soil applied systemic acquired resistance inducers integrated with copper bactericide sprays for control of citrus canker on bearing grapefruit trees[J]. Crop Prot., 2016,90:157-162. doi: 10.1016/j.cropro.2016.09.002

    14. [14]

      Romanazzi G., Sanzani S.M., Bi Y.. Induced resistance to control postharvest decay of fruit and vegetables[J]. Postharvest.Biol.Technol, 2016,122:82-94. doi: 10.1016/j.postharvbio.2016.08.003

    15. [15]

      Smiglak M., Kukawka R., Lewandowski P.. New dual functional salts based on cationic derivative of plant resistance inducer—benzo[1.2.3] thiadiazole-7-carbothioic acid, S-methyl ester[J]. ACS Sustain.Chem.Eng, 2016,4:3344-3351. doi: 10.1021/acssuschemeng.6b00398

    16. [16]

      Bektas Y., Rodriguez-Salus M., Schroeder M.. The synthetic elicitor DPMP (2, 4-dichloro-6-{(E)-[(3-methoxyphenyl)imino] methyl}phenol)triggers strong immunity in Arabidopsis thaliana and tomato[J]. Sci.Rep., 2016,629554. doi: 10.1038/srep29554

    17. [17]

      Görlach J., Volrath S., Knauf-Beiter G.. Benzothiadiazole a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat[J]. Plant Cell, 1996,8:629-643. doi: 10.1105/tpc.8.4.629

    18. [18]

      Han Q.M., Feng H., Zhao H.Y.. Effect of a benzothiadiazole on inducing resistance of soybean to Phytophthora sojae[J]. Protoplasma, 2013,250:471-481. doi: 10.1007/s00709-012-0430-6

    19. [19]

      Lawton K.A., Friedrich L., Hunt M.. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway[J]. Plant J., 1996,10:71-82. doi: 10.1046/j.1365-313X.1996.10010071.x

    20. [20]

      Sticher L., Mauch-Mani B., Métraux J.P.. Systemic acquired resistance[J]. Annu. Rev.Phytopathol., 1997,35:235-270. doi: 10.1146/annurev.phyto.35.1.235

    21. [21]

      Tsubata K., Kuroda K., Yamamoto Y., Yasokawa N. Development of a novel plant activator for rice diseases, tiadinil[J]. J.Pestic.Sci., 2006,31:161-162. doi: 10.1584/jpestics.31.161

    22. [22]

      Maeda T., Ishiwari H. Tiadinil a plant activator of systemic acquired resistance, boosts the production of herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi in the tea plant Camellia sinensis[J]. Exp. Appl.Acarol., 2012,58:247-258. doi: 10.1007/s10493-012-9577-2

    23. [23]

      Iwai T., Seo S., Mitsuhara I., Ohashi Y. Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants[J]. Plant Cell Physiol., 2007,48:915-924. doi: 10.1093/pcp/pcm062

    24. [24]

      Fan Z.J., Shi Z.G., Zhang H.K.. Synthesis and biological activity evaluation of 1, 2, 3-thiadiazole derivatives as potential elicitors with highly systemic acquired resistance[J]. J.Agric.Food Chem., 2009,57:4279-4286. doi: 10.1021/jf8031364

    25. [25]

      Li F.Y., Guo X.F., Fan Z.J.. Synthesis and biological activities of novel 2-amino-1, 3-thiazole-4-carboxylic acid derivatives[J]. Chin.Chem.Lett., 2015,26:1315-1318. doi: 10.1016/j.cclet.2015.05.040

    26. [26]

      Li Y.D., Mao W.T., Fan Z.J.. Synthesis and biological evaluation of novel 1, 2, 4-triazole containing 1, 2, 3-thiadiazole derivatives[J]. Chin.Chem.Lett., 2013,24:1134-1136. doi: 10.1016/j.cclet.2013.06.024

    27. [27]

      Burden N., Maynard S.K., Weltje L., Wheeler J.R. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites:a retrospective validation approach[J]. Regul.Toxicol.Pharmacol., 2016,80:241-246. doi: 10.1016/j.yrtph.2016.05.032

    28. [28]

      Xia S., Feng Y., Cheng J.G.. QAAR exploration on pesticides with high solubility:an investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions[J]. Chin.Chem.Lett., 2014,25:973-977. doi: 10.1016/j.cclet.2014.05.046

    29. [29]

      Veselinović J.B., Nikolić G.M., Trutić N.V., Živkovic J.V., Veselinović A.M.. Monte Carlo QSAR models for predicting organophosphate inhibition of acetycholinesterase[J]. SAR QSAR Environ.Res., 2015,26:449-460. doi: 10.1080/1062936X.2015.1049665

    30. [30]

      Liu X.F., Jiang H.L., Li H.L. SHAFTS:a hybrid approach for 3D molecular similarity calculation.1.Method and assessment of virtual screening[J]. J.Chem. Inf.Model., 2011,51:2372-2385. doi: 10.1021/ci200060s

    31. [31]

      Lu W.Q., Liu X.F., Cao X.W.. SHAFTS:a hybrid approach for 3D molecular similarity calculation.2.Prospective case study in the discovery of diverse p90 ribosomal S6 protein kinase 2 inhibitors to suppress cell migration[J]. J.Med. Chem., 2011,54:3564-3574. doi: 10.1021/jm200139j

    32. [32]

      Li S.L., Zhou Y., Lu W.Q.. Identification of inhibitors against p90 ribosomal S6 kinase 2(RSK2) through structure-based virtual screening with the inhibitor-constrained refined homology model[J]. J.Chem.Inf.Model., 2011,51:2939-2947. doi: 10.1021/ci2002445

    33. [33]

      Zhou W., Liu X.F., Tu Z.C.. Discovery of pteridin-7(8H)-one-based irreversible inhibitors targeting the epidermal growth factor receptor(EGFR) kinase T790 M/L858R mutant[J]. J.Med.Chem., 2013,56:7821-7837. doi: 10.1021/jm401045n

    34. [34]

      Nivoix Y., Levêque D., Herbrecht R.. The enzymatic basis of drug-drug interactions with systemic triazole antifungals[J]. Clin.Pharmacokinet., 2008,47:779-792. doi: 10.2165/0003088-200847120-00003

    35. [35]

      Kumar D., Narayanam M.K., Chang K.H., Shah K. Synthesis of novel indolyl-1, 2, 4-triazoles as potent and selective anticancer agents[J]. Chem.Biol.Drug Des., 2011,77:182-188. doi: 10.1111/jpp.2011.77.issue-3

    36. [36]

      Ferreira M.D.L.G., Pinheiro L.C.S., Santos-Filho O.A.. Design synthesis, and antiviral activity of new 1H-1, 2, 3-triazole nucleoside ribavirin analogs[J]. Med. Chem.Res., 2014,23:1501-1511. doi: 10.1007/s00044-013-0762-6

    37. [37]

      Lu W.C., Cao X.F., Hu M.. A highly enantioselective access to chiral 1-(β-arylalkyl)-1H-1, 2, 4-triazole derivatives as potential agricultural bactericides[J]. Chem.Biodivers., 2011,8:1497-1511. doi: 10.1002/cbdv.201000180

    38. [38]

      Ma Y.M., Liu R.H., Gong X.Y.. Synthesis and herbicidal activity of NN-diethyl-3-(arylselenonyl)-1H-1, 2, 4-triazole-1-carboxamide[J]. J.Agric.Food. Chem., 2006,54:7724-7728. doi: 10.1021/jf0609328

    39. [39]

      Charrier N., Clarke B., Cutler L.. Second generation of BACE-1 inhibitors. Part 1:the need for improved pharmacokinetics[J]. Bioorg.Med.Chem.Lett., 2009,19:3664-3668. doi: 10.1016/j.bmcl.2009.03.165

    40. [40]

      Liu X.F., Bai F., Ouyang S.S.. Cyndi:a multi-objective evolution algorithm based method for bioactive molecular conformational generation[J]. BMC Bioinf., 2009,10101. doi: 10.1186/1471-2105-10-101

    41. [41]

      Gong J.Y., Cai C.Q., Liu X.F.. ChemMapper:a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method[J]. Bioinformatics, 2013,29:1827-1829. doi: 10.1093/bioinformatics/btt270

    42. [42]

      Cudworth D.P., Hegde V.B., Yap M.C.H.. Structure-activity relationship development of dihaloaryl triazole compounds as insecticides and acaricides. 1.phenyl thiophen-2-yl triazoles[J]. J.Agric.Food Chem., 2007,55:7517-7526. doi: 10.1021/jf071498s

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    3. [3]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    4. [4]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    5. [5]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    6. [6]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    7. [7]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    8. [8]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    9. [9]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    10. [10]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    11. [11]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    12. [12]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    13. [13]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    14. [14]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    15. [15]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    16. [16]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    17. [17]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    18. [18]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    19. [19]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    20. [20]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

Metrics
  • PDF Downloads(1)
  • Abstract views(714)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return