Citation: Wang Xiao-Dong, Liu Yu-Jie, Li Fen-Jie, Li Zhi-Li. Poplar catkin: A natural biomaterial for highly specific and efficient enrichment of sialoglycopeptides[J]. Chinese Chemical Letters, ;2017, 28(5): 1018-1026. doi: 10.1016/j.cclet.2017.02.001 shu

Poplar catkin: A natural biomaterial for highly specific and efficient enrichment of sialoglycopeptides

  • Corresponding author: Li Zhi-Li, lizhili@ibms.pumc.edu.cn
  • 1 Both authors contributed equally to this work
  • Received Date: 28 October 2016
    Revised Date: 30 November 2016
    Accepted Date: 23 December 2016
    Available Online: 4 May 2017

Figures(9)

  • Sialic acids as terminal entities of larger glycans linked to proteins and lipids are involved in multiple different pathological and physiological processes. Structural characterisation of sialoglycoconjugates is required to understand their biological function. However, a comprehensive sialylation analysis of sialoglycoconjugates has remained challenges. In this study, we employ a natural biomaterial, poplar catkin derived from white poplar tree (Populus tomentosa Carr.), to develop a novel capturing microtip for selective and efficient enrichment of sialoglycopeptides, without losses of sialic acid residues and water molecules from sialoglycopeptides. Scanning electron microscopy and Fourier-transform infrared spectroscopy analysis, along with Mäule and Wiesner staining assays, indicated that the main components on the outer layer of the poplar catkin are syringyl and guaiacyl lignins which play a key role in enriching sialoglycopeptides from complex peptide mixture.
  • 加载中
    1. [1]

      Blix G., Lindberg E., Odin L., Werner I.. Sialic acids[J]. Nature, 1995,175:340-341.  

    2. [2]

      Cunningham B.A., Hemperly J.J., Murray B.A.. Neural cell adhesion molecule:structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing[J]. Science, 1987,236:799-806. doi: 10.1126/science.3576199

    3. [3]

      Fukuda M.. Possible roles of tumor-associated carbohydrate antigens[J]. Cancer Res., 1996,56:2237-2244.  

    4. [4]

      Alley Jr W.R., Mann B.F., Novotny M.V.. High-sensitivity analytical approaches for the structural characterization of glycoproteins[J]. Chem. Rev., 2013,113:2668-2732. doi: 10.1021/cr3003714

    5. [5]

      Paulson J.C.. Glycoproteins:what are the sugar chains for?[J]. Trends Biochem. Sci., 1989,14:272-276. doi: 10.1016/0968-0004(89)90062-5

    6. [6]

      Göröug P., Pearson J.D.. Sialic acid moieties on surface glycoproteins protect endothelial cells from proteolytic damage[J]. J. Pathol., 1985,146:205-212. doi: 10.1002/(ISSN)1096-9896

    7. [7]

      Gorelik E., Galili U., Raz A.. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis[J]. Cancer Metastasis Rev., 2001,20:245-277. doi: 10.1023/A:1015535427597

    8. [8]

      Scanlin T.F., Glick M.C.. Terminal glycosylation and disease:influence on cancer and cystic fibrosis[J]. Glycoconj. J., 2000,17:617-626. doi: 10.1023/A:1011034912226

    9. [9]

      Kim Y.J., Varki A.. Perspectives on the significance of altered glycosylation of glycoproteins in cancer[J]. Glycoconj. J., 1997,14:569-576. doi: 10.1023/A:1018580324971

    10. [10]

      Romppanen J., Haapalainen T., Punnonen K., Penttil I.. Serum sialic acid and prostate-specific antigen in differential diagnosis of benign prostate hyperplasia and prostate cancer[J]. Anticancer Res., 2002,22:415-420.  

    11. [11]

      Krzeslak A., Gaj Z., Pomorski L., Lipinska A.. Sialylation of intracellular proteins of thyroid lesions[J]. Oncol. Rep., 2007,17:1237-1242.  

    12. [12]

      Ufret-Vincenty C.A., Baro D.J., Santana L.F.. Differential contribution of sialic acid to the function of repolarizing K+ currents in ventricular myocytes[J]. Am. J. Physiol. Cell Physiol., 2001,28:C464-474.  

    13. [13]

      Gökmen S.S., Kazezoglu C., Sunar B.. Relationship between serum sialic acids, sialic acid-rich inflammation-sensitive proteins and cell damage in patients with acute myocardial infarction[J]. Clin. Chem. Lab. Med., 2006,44:199-206.  

    14. [14]

      Amano J., Nishikaze T., Tougasaki F.. Derivatization with 1-pyrenyldiazomethane enhances ionization of glycopeptides but not peptides in matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal. Chem., 2010,82:8738-8743. doi: 10.1021/ac101555a

    15. [15]

      Sekiya S., Wada Y., Tanaka K.. Derivatization for stabilizing sialic acids in MALDI-MS[J]. Anal. Chem., 2005,77:4962-4968. doi: 10.1021/ac050287o

    16. [16]

      Toyoda M., Ito H., Matsuno Y.K., Narimatsu H., Kameyama A.. Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS[J]. Anal. Chem., 2008,80:5211-5218. doi: 10.1021/ac800457a

    17. [17]

      Zhang H., Li X.J., Martin D.B., Aebersold R.. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry[J]. Nat. Biotechnol., 2003,21:660-666. doi: 10.1038/nbt827

    18. [18]

      Tian Y., Esteva F.J., Song J., Zhang H.. Altered expression of sialylated glycoproteins in breast cancer using hydrazide chemistry and mass spectrometry[J]. Mol. Cell. Proteom., 2012,11M111.011403.. doi: 10.1074/mcp.M111.011403

    19. [19]

      Nilsson J., Rüetschi U., Halim A.. Enrichment of glycopeptides for glycan structure and attachment site identification[J]. Nat. Methods, 2009,6:809-811. doi: 10.1038/nmeth.1392

    20. [20]

      Hirabayashi J.. Lectin-based structural glycomics:glycoproteomics and glycan profiling[J]. Glycoconj. J., 2004,21:35-40. doi: 10.1023/B:GLYC.0000043745.18988.a1

    21. [21]

      Yang Z., Hancock W.S.. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column[J]. J. Chromatogr. A, 2004,1053:79-88. doi: 10.1016/S0021-9673(04)01433-5

    22. [22]

      Takegawa Y., Deguchi K., Ito H.. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography[J]. J. Sep. Sci., 2006,29:2533-2540. doi: 10.1002/(ISSN)1615-9314

    23. [23]

      Calvano C.D., Zambonin C.G., Jensen O.N.. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry[J]. J. Proteom., 2008,71:304-317. doi: 10.1016/j.jprot.2008.06.013

    24. [24]

      Yang S., Eshghi S.T., Chiu H., DeVoe D.L., Zhang H.. Glycomic analysis by glycoprotein immobilization for glycan extraction and liquid chromatography on microfluidic chip[J]. Anal. Chem., 2013,85:10117-10125. doi: 10.1021/ac4013013

    25. [25]

      Xin L., Zhang H.J., Liu H., Li Z.L.. Equal ratio of graphite carbon to activated charcoal for enrichment of N-glycopeptides prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric identification[J]. Rapid Commun. Mass Spectrom., 2012,26:269-274. doi: 10.1002/rcm.5327

    26. [26]

      Larsen M.R., Højrup P., Roepstorff P.. Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry[J]. Mol. Cell. Proteom., 2005,4:107-119.

    27. [27]

      Palmisano G., Lendal S.E., Engholm-Keller K.. Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry[J]. Nat. Protoc., 2010,5:1974-1982. doi: 10.1038/nprot.2010.167

    28. [28]

      Wang W.J., Liu H., Li Z.L.. Tandem mass spectrometric characterization of fetuin sialylated glycopeptides enriched by TiO2 microcolumn[J]. Chin. J. Chem., 2011,29:2229-2235. doi: 10.1002/cjoc.v29.11

    29. [29]

      G. Palmisano, S. E. Lendal, M. R. Larsen, Titanium dioxide enrichment of sialic acid-containing glycopeptides, in: K. Gevaert, J. Vandekerckhove (Eds. ), GelFree Proteomics, Humana Press, New York, 2011, pp. 309-322.

    30. [30]

      Larsen M.R., Jensen S.S., Jakobsen L.A., Heegaard N.H.H.. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry[J]. Mol. Cell. Proteom., 2007,6:1778-1787. doi: 10.1074/mcp.M700086-MCP200

    31. [31]

      Bie Z.J., Chen Y., Li H.Y., Wu R.H., Liu Z.. Off-line hyphenation of boronate affinity monolith-based extraction with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for efficient analysis of glycoproteins/glycopeptides[J]. Anal. Chim. Acta, 2014,834:1-8. doi: 10.1016/j.aca.2014.04.035

    32. [32]

      Lu Y., Bie Z.J., Liu Y.C., Liu Z.. Fine-tuning the specificity of boronate affinity monoliths toward glycoproteins through pH manipulation[J]. Analyst, 2013,138:290-298. doi: 10.1039/C2AN36048A

    33. [33]

      Bie Z.J., Chen Y., Ye J., Wang S.S., Liu Z.. Boronate-affinity glycan-oriented surface imprinting:a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments[J]. Angew. Chem. Int. Ed. Engl., 2015,54:10211-10215. doi: 10.1002/anie.201503066

    34. [34]

      Wang S.S., Yin D.Y., Wang W.J.. Targeting and imaging of cancer cells via monosaccharide-imprinted fluorescent nanoparticles[J]. Sci. Rep., 2016,622757. doi: 10.1038/srep22757

    35. [35]

      Selman M.H.J., Hemayatkar M., Deelder A.M., Wuhrer M.. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides[J]. Anal. Chem., 2011,83:2492-2499. doi: 10.1021/ac1027116

    36. [36]

      Liu Y.J., Liu Y.J., Zhang D., Zhang R.Q., Li Z.L.. Kapok fiber:a natural biomaterial for highly specific and efficient enrichment of sialoglycopeptides[J]. Anal. Chem., 2016,88:1067-1072. doi: 10.1021/acs.analchem.5b04014

    37. [37]

      Frankland A.W.. Seasonal allergic rhinitis[J]. Proc. R. Soc. Med., 1971,64:447-450.

    38. [38]

      Yuan T.Q., Sun S.N., Xu F., Sun R.C.. Structural characterization of lignin from triploid of Populus tomentosa Carr[J]. J. Agric. Food Chem., 2011,59:6605-6615. doi: 10.1021/jf2003865

    39. [39]

      Zhang A.P., Liu C.F., Sun R.C.. Fractional isolation and characterization of lignin and hemicelluloses from Triploid of Populus tomentosa Carr[J]. Ind. Crops Prod., 2010,31:357-362. doi: 10.1016/j.indcrop.2009.12.003

    40. [40]

      Weng J.K., Akiyama T., Bonawitz N.D.. Convergent evolution of syringyl lignin biosynthesis via distinct pathways in the lycophyte Selaginella and flowering plants[J]. Plant Cell, 2010,22:1033-1045. doi: 10.1105/tpc.109.073528

    41. [41]

      Jouanin L., Goujon T., de Nadaï V.. Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity[J]. Plant Physiol., 2000,123:1363-1374. doi: 10.1104/pp.123.4.1363

  • 加载中
    1. [1]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    4. [4]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    5. [5]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    6. [6]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    7. [7]

      Yao-Hua GuYu ChenQing LiNeng-Bin XieXue XingJun XiongMin HuTian-Zhou LiKe-Yu YuanYu LiuTang TangFan HeBi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627

    8. [8]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    9. [9]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    10. [10]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    11. [11]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    12. [12]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    13. [13]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    14. [14]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    15. [15]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    16. [16]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    17. [17]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    18. [18]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    19. [19]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    20. [20]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

Metrics
  • PDF Downloads(0)
  • Abstract views(702)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return