Molecular recognition of sulfonatocalixarene with organic cations at the self-assembled interface: a thermodynamic investigation
- Corresponding author: Guo Dong-Sheng, dshguo@nankai.edu.cn
Citation:
Pan Yu-Chen, Tian Han-Wen, Peng Shu, Hu Xin-Yue, Guo Dong-Sheng. Molecular recognition of sulfonatocalixarene with organic cations at the self-assembled interface: a thermodynamic investigation[J]. Chinese Chemical Letters,
;2017, 28(4): 787-792.
doi:
10.1016/j.cclet.2016.12.027
Wang Q., Li Z., Tao D.D.. Supramolecular aggregates as sensory ensembles[J]. Chem.Commun., 2016,52:12929-12939. doi: 10.1039/C6CC06075G
Ariga K., Ito H., Hill J.P., Tsukube H. Molecular recognition:from solution science to nano/materials technology[J]. Chem.Soc.Rev., 2012,41:5800-5835. doi: 10.1039/c2cs35162e
Ariga K., Kunitake T. Molecular recognition at air-water and related interfaces: Complementary hydrogen bonding and multisite interaction[J]. Acc.Chem.Res., 1998,31:371-378. doi: 10.1021/ar970014i
Wang H., Zhang D., Zhao X., Li Z. Supramolecular organic frameworks(SOFs): water-phase periodic porous self-assembled architectures[J]. Acta Chim.Sinica, 2015,73471. doi: 10.6023/A14120880
Onda M., Yoshihara K., Koyano H., Ariga K., Kunitake T. Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers.A comparison of microscopic and macroscopic interfaces[J]. J.Am. Chem.Soc., 1996,118:8524-8530. doi: 10.1021/ja960991+
Ariga K., Kamino A., Cha X., Kunitake T. Multisite recognition of aqueous dipeptides by oligoglycine arrays mixed with guanidinium and other receptor units at the air-water interface[J]. Langmuir, 1999,15:3875-3885. doi: 10.1021/la981047p
Cha X., Ariga K., Kunitake T. Molecular recognition of aqueous dipeptides at multiple hydrogen-bonding sites of mixed peptide monolayers[J]. J.Am.Chem. Soc., 1996,118:9545-9551. doi: 10.1021/ja961526f
Kolusheva S., Molt O., Herm M., Schrader T., Jelinek R. Selective detection of catecholamines by synthetic receptors embedded in chromatic polydiacetylene vesicles[J]. J.Am.Chem.Soc., 2005,127:10000-10001. doi: 10.1021/ja052436q
Molt O., Rubeling D., Schrader T. A selective biomimetic tweezer for noradrenaline[J]. J.Am.Chem.Soc., 2003,125:12086-12087. doi: 10.1021/ja035212l
Zadmard R., Arendt M., Schrader T. Multipoint recognition of basic proteins at a membrane model[J]. J.Am.Chem.Soc., 2004,126:7752-7753. doi: 10.1021/ja049191m
Hayden C.C., Hwang J.S., Abate E.A., Kent M.S., Sasaki D.Y. Directed formation of lipid membrane microdomains as high affinity sites for his-tagged proteins[J]. J.Am.Chem.Soc., 2009,131:8728-8729. doi: 10.1021/ja901157c
R. V. Vico, J. Voskuhl, B. J. Ravoo, Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation, Langmuir 27 (2011)1391-1397.
Samanta A., Stuart M.C.A., Ravoo B.J. Photoresponsive capture and release of lectins in multilamellar complexes[J]. J.Am.Chem.Soc., 2012,134:19909-19914. doi: 10.1021/ja3101837
J. Huskens, Multivalent interactions at interfaces, Curr. Opin. Chem. Biol. 10 (2006)537-543.
Mashhadizadeh M.H., Talemi R.P. Application of diazo-thiourea and gold nano-particles in the design of a highly sensitive and selective DNA biosensor[J]. Chin.Chem.Lett., 2015,26:160-166. doi: 10.1016/j.cclet.2014.09.004
O. Crespo-Biel, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, Writing with molecules on molecular printboards, Dalton Trans. (2006)2737-2741.
Ludden M.J.W., Reinhoudt D.N., Huskens J. Molecular printboards:versatile platforms for the creation and positioning of supramolecular assemblies and materials[J]. Chem.Soc.Rev., 2006,35:1122-1134. doi: 10.1039/b600093m
M.R.de Jong, Huskens J., Reinhoudt D.N. Influencing the binding selectivity of self-assembled cyclodextrin monolayers on gold through their architecture[J]. Chem.Eur.J., 2001,7:4164-4170. doi: 10.1002/(ISSN)1521-3765
Guo D.S., Liu Y. Suprannolecular chemistry of p-sulfonatocalix[n] arenes and its biological applications[J]. Acc.Chem.Res., 2014,47:1925-1934. doi: 10.1021/ar500009g
Hu X.Y., Peng S., Guo D.S., Ding F., Liu Y. Ding F., Liu Y.Molecular recognition of amphiphilicp-sulfonatocalix[4] arene with organic ammoniums[J]. Supramol. Chem., 2014,27:336-345.
Liu Y., Li C.J., Guo D.S., Pan Z.H., Li Z. A comparative study of complexation of β-cyclodextrin, calix[4] arenesulfonate and cucurbit[7] uril with dye guests: fluorescence behavior and binding ability[J]. Supramol.Chem., 2007,19:517-523. doi: 10.1080/10610270601145444
Xu Z., Peng S., Wang Y.Y.. Broad-spectrum tunable photoluminescent nanomaterials constructed from a modular light-harvesting platform based on macrocyclic amphiphiles[J]. Adv.Mater., 2016,28:7666-7671. doi: 10.1002/adma.201601719
Geng W.C., Liu Y.C., Wang Y.Y.. A self-assembled white-light-emitting system in aqueous medium based on a macrocyclic amphiphile[J]. Chem. Commun., 2017,53:392-395. doi: 10.1039/C6CC09079F
Wang Y.X., Guo D.S., Duan Y.C., Wang Y.J., Liu Y.. Amphiphilic p-sulfonatocalix[4] arene as drug chaperone for escorting anticancer drugs[J]. Sci.Rep., 2015,59019. doi: 10.1038/srep09019
Guo D.S., Wang K., Liu Y. Selective bindingbehaviors ofp-sulfonatocalixarenes in aqueous solution[J]. J.Incl.Phenom.Macrocycl.Chem., 2008,62:1-21. doi: 10.1007/s10847-008-9452-2
Arena G., Casnati A., Contino A.. Water-soluble calixarene hosts that specifically recognize the trimethylammonium group or the benzene ring of aromatic ammonium cations:a combined 1H NMR, calorimetric, and molecular mechanics investigation[J]. Chem.Eur.J., 1999,5:738-744. doi: 10.1002/(ISSN)1521-3765
V. Francisco, A. Pineiro, W. M. Nau, L. Garcia-Rio, The true affinities of metal cations to p-sulfonatocalix[4] arene: a thermodynamic study at neutral ph reveals a pitfall due to salt effects in microcalorimetry, Chem. Eur. J. 19(2013) 17809-17820.
C. Bonal, Y. Israeli, J. P. Morel, N. Morel-Desrosiers, Binding of inorganic and organic cations by p-sulfonatocalix[4] arene in water: a thermodynamic study, J. Chem. Soc. , Perkin Trans. 2(2001)1075-1078.
Guo D.S., Wang L.H., Liu Y. Highlyeffectivebindingofmethylviologendication and its radical cation by p-sulfonatocalix[4, 5] arenes[J]. J.Org.Chem., 2007,72:7775-7778. doi: 10.1021/jo701304g
Liu Y., Guo D.S., Zhang H.Y., Ma Y.H., Yang E.C. he structure and thermodynamics of calix[n] arene complexes with dipyridines and phenanthroline in aqueous solution studied by microcalorimetry and NMR spectroscopy[J]. J.Phys.Chem.B, 2006,110:3428-3434. doi: 10.1021/jp0545703
Guo D.S., Zhang H.Q., Ding F., Liu Y. Thermodynamic origins of selective binding affinity between p-sulfonatocalix[4, 5] arenes with biguanidiniums[J]. Org.Biomol.Chem., 2012,10:1527-1536. doi: 10.1039/c2ob06313a
Koh K.N., Araki K., Ikeda A., Otsuka H., Shinkai S. Reinvestigation of calixarene-based artificial-signaling acetylcholine receptors useful in neutral aqueous (water/methanol)solution[J]. J.Am.Chem.Soc., 1996,118:755-758. doi: 10.1021/ja951488k
V. Francisco, N. Basilio, L. Garcia-Rio, Counterion exchange as a decisive factor in the formation of host: guest complexes by p-sulfonatocalix[4] arene, J. Phys. Chem. B 116(2012)5308-5315.
N. Douteau-Guével, A. W. Coleman, J. P. Morel, N. Morel-Desrosiers, Complexation of the basic amino acids lysine and arginine by three sulfonatocalix[n] arenes(n=4, 6 and 8) in water: microcalorimetric determination of the Gibbs energies, enthalpies and entropies of complexation, J. Chem. Soc. Perkin Trans. 2(1999)629-634.
Kalchenko O.I., Perret F., N.Morel-Desrosiers , Coleman A.W. A comparative study of the determination of the stability constants of inclusion complexes of p-sulfonatocalix[4] arene with amino acids by RP-HPLC and 1H NMR[J]. J.Chem. Soc.Perkin Trans., 2001,2:258-263.
Cui J., Uzunova V.D., Guo D.S.. Effect of lower-rim alkylation of p-sulfonatocalix[4] arene on the thermodynamics of host-guest complexation[J]. Eur.J.Org.Chem., 2010,2010:1704-1710. doi: 10.1002/ejoc.v2010:9
Wang L.H., Du P., Yang J., Guo D.S., Liu Y. Binding behaviour and solubilisation ofp-sulfonatocalixarenes to cinchona alkaloids[J]. Supramol.Chem., 2014,26:809-816. doi: 10.1080/10610278.2014.882509
Perret F., Nishihara M., Takeuchi T.. Anionic fullerenes calixarenes, coronenes, and pyrenes as activators of oligo/polyarginines in model membranes and live cells[J]. J.Am.Chem.Soc., 2005,127:1114-1115. doi: 10.1021/ja043633c
Takeuchi T., Bagnacani V., Sansone F., Matile S. Amphiphilic counterion activators for DNA:stimuli-responsive cation transporters and biosensors in bulk and lipid bilayer membranes[J]. ChemBioChem, 2009,10:2793-2799. doi: 10.1002/cbic.v10:17
Basilio N., Garcia-Rio L.. Calixarene-based surfactants:conformational-dependent solvation shells for the alkyl chains[J]. Chem Phys Chem, 2012,13:2368-2376. doi: 10.1002/cphc.v13.9
Wang K.P., Chen Y., Liu Y. A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior[J]. Chem.Commun., 2015,51:1647-1649. doi: 10.1039/C4CC08721F
N. Basilio, V. Francisco, L. Garcia-Rio, Aggregation of p-sulfonatocalixarene-based amphiphiles and supra-amphiphiles, Int. J. Mol. Sci. 14(2013)3140-3157.
N. Basilio, L. Garci'a-Ri'o, M. Marti'n-Pastor, NMR evidence of slow monomer-micelle exchange in a calixarene-based surfactant, J. Phys. Chem. B 114(2010) 4816-4820.
Qin Z.B., Guo D.S., Gao X.N., Liu Y. Supra-amphiphilic aggregates formed by p-sulfonatocalix[4] arenes and the antipsychotic drug chlorpromazine[J]. Soft Matter, 2014,10:2253-2263.
Hu X.Y., Chen Y., Liu Y. Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride[J]. Chin.Chem.Lett., 2015,26:862-866. doi: 10.1016/j.cclet.2015.01.003
Wang Y.X., Liu Y. Supramolecular assemblies based on p-sulfonatocalixarenes and their functions[J]. Acta Chim.Sinica, 2015,73:984-991.
S. Fernandez-Abad, M. Pessego, N. Basilio, L. Garcia-Rio, Counterion-controlled self-sorting in an amphiphilic calixarene micellar system, Chem. Eur. J. 22 (2016)6466-6470.
Shin M.J., Kim J.D. Reversible chromatic response of polydiacetylene derivative vesicles in D2O solvent[J]. Langmuir, 2016,32:882-888. doi: 10.1021/acs.langmuir.5b03945
B. Yoon, S. Lee, J. M. Kim, Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors, Chem. Soc. Rev. 38 (2009)1958-1968.
Ahn D.J., Kim J.M. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors[J]. Acc.Chem.Res., 2008,41:805-816. doi: 10.1021/ar7002489
Jin T., Fujii F., Ooi Y. Interfacial recognition of acetylcholine by an amphiphilic p-sulfonatocalix[8] arene derivative incorporated into dimyristoyl phosphatidylcholine vesicles[J]. Sensors, 2008,8:6777-6790. doi: 10.3390/s8106777
Wang Y.X., Zhang Y.M., Wang Y.L., Liu Y. Multifunctionalvehicleof amphiphilic calix[4] arene mediated by liposome[J]. Chem.Mater., 2015,27:2848-2854. doi: 10.1021/cm504653k
Ma J., Meng Q., Hu X.. Synthesis of a water-soluble carboxylatobiphen[4] arene and its selective complexation toward acetylcholine[J]. Org.Lett., 2016,18:5740-5743. doi: 10.1021/acs.orglett.6b03005
Von W., Doering E., Knox L.H. Thecycloheptatrienylium(tropylium)ion[J]. J.Am. Chem.Soc., 1954,76:3203-3206. doi: 10.1021/ja01641a027
F. Perret, J. P. Morel, N. Morel-Desrosiers, Thermodynamicsof thecomplexation of the p-sulfonatocalix[4] arene with simple model guests in water: a microcalorimetric study, Supramol. Chem. 15(2003)199-206.
Y. Marcus, Ions in Water and Biophysical Implications, Springer, Netherlands, Dordrecht, 2012.
Mason P.E., Neilson G.W., Dempsey C.E., Barnes A.C., Cruickshank J.M. The hydration structure of guanidinium and thiocyanate ions:implications for protein stability in aqueous solution[J]. Proc.Natl.Acad.Sci., 2003,100:4557-4561. doi: 10.1073/pnas.0735920100
So S.M., Moozeh K., Lough A.J., Chin J. Highly stereoselective recognition and deracemization of amino acids by supramolecular self-assembly[J]. Angew. Chem.Int.Ed., 2014,53:829-832. doi: 10.1002/anie.201307410
Smithrud D.B., Diederich F. Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships:a general model for solvation effects on apolar binding[J]. J.Am. Chem.Soc., 1990,112:339-343. doi: 10.1021/ja00157a052
Shinkai S., Mori S., Koreishi H., Tsubaki T., Manabe O. Hexasulfonated calix[6] arene derivatives:a new class of catalysts, surfactants, and host molecules[J]. J. Am.Chem.Soc., 1986,108:2409-2416. doi: 10.1021/ja00269a045
K. Wang, D. S. Guo, H. Q. Zhang, etal. , Highlyeffective bindingof viologensbyp-sulfonatocalixarenes for the treatment of viologen poisoning, J. Med. Chem. 52 (2009)6402-6412.
Wang G.M., Li J.H., Zhang X.. Facile in situ syntheses of new templates and formations of three zinc phosphates[J]. Inorg.Chem.Commun., 2014,46:295-300. doi: 10.1016/j.inoche.2014.06.025
Zhao H.X., Guo D.S., Liu Y. Binding behaviors of p-sulfonatocalix[4] arene with gemini guests[J]. J.Phys.Chem.B, 2013,117:1978-1987. doi: 10.1021/jp312744d
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
Qihan Lin , Jiabin Xing , Yue-Yang Liu , Gang Wu , Shi-Jia Liu , Hui Wang , Wei Zhou , Zhan-Ting Li , Dan-Wei Zhang . taBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
Dan Luo , Jinya Tian , Jianqiao Zhou , Xiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846