Citation: Pan Yu-Chen, Tian Han-Wen, Peng Shu, Hu Xin-Yue, Guo Dong-Sheng. Molecular recognition of sulfonatocalixarene with organic cations at the self-assembled interface: a thermodynamic investigation[J]. Chinese Chemical Letters, ;2017, 28(4): 787-792. doi: 10.1016/j.cclet.2016.12.027 shu

Molecular recognition of sulfonatocalixarene with organic cations at the self-assembled interface: a thermodynamic investigation

  • Corresponding author: Guo Dong-Sheng, dshguo@nankai.edu.cn
  • Received Date: 18 November 2016
    Revised Date: 19 December 2016
    Accepted Date: 21 December 2016
    Available Online: 7 April 2017

Figures(4)

  • A microcalorimetric study on molecular recognition of p-sulfonatocalix[4] arene derivatives at self-assembled interface in comparison with in bulk water was performed, inspired by the dramatic change in physicochemical characteristics from bulk water to interface.A total of six cationic molecules were screened as model guests, including ammonium(NH4+), guanidinium(Gdm+), N, N'-dimethyl-1, 4-diazabicyclo[2.2.2] octane(DMDABCO2+), tropylium(Tpm+), N-methyl pyridinium(N-mPY+)and methyl viologen(MV2+).The complexation with NH4+, Gdm+ and DMDABCO2+ is pronouncedly enhanced when the recognition process moved from bulk water to interface, whereas the complexation stabilities with Tpm+, N-mPY+ and MV2+increase slightly or even decrease to some extent.A more interesting phenomenon arises from the NH4+/Gdm+ pair that the thermodynamic origin at interface differs definitely from each other although with similar association constants.The results were discussed in terms of differential driving forces, electrostatic, hydrogen bond as well as π-stacking interactions, originating from the unique physicochemical features of interfaces, mainly the polarity and dielectric constant.
  • 加载中
    1. [1]

      Wang Q., Li Z., Tao D.D.. Supramolecular aggregates as sensory ensembles[J]. Chem.Commun., 2016,52:12929-12939. doi: 10.1039/C6CC06075G

    2. [2]

      Ariga K., Ito H., Hill J.P., Tsukube H. Molecular recognition:from solution science to nano/materials technology[J]. Chem.Soc.Rev., 2012,41:5800-5835. doi: 10.1039/c2cs35162e

    3. [3]

      Ariga K., Kunitake T. Molecular recognition at air-water and related interfaces: Complementary hydrogen bonding and multisite interaction[J]. Acc.Chem.Res., 1998,31:371-378. doi: 10.1021/ar970014i

    4. [4]

      Wang H., Zhang D., Zhao X., Li Z. Supramolecular organic frameworks(SOFs): water-phase periodic porous self-assembled architectures[J]. Acta Chim.Sinica, 2015,73471. doi: 10.6023/A14120880

    5. [5]

      Onda M., Yoshihara K., Koyano H., Ariga K., Kunitake T. Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers.A comparison of microscopic and macroscopic interfaces[J]. J.Am. Chem.Soc., 1996,118:8524-8530. doi: 10.1021/ja960991+

    6. [6]

      Ariga K., Kamino A., Cha X., Kunitake T. Multisite recognition of aqueous dipeptides by oligoglycine arrays mixed with guanidinium and other receptor units at the air-water interface[J]. Langmuir, 1999,15:3875-3885. doi: 10.1021/la981047p

    7. [7]

      Cha X., Ariga K., Kunitake T. Molecular recognition of aqueous dipeptides at multiple hydrogen-bonding sites of mixed peptide monolayers[J]. J.Am.Chem. Soc., 1996,118:9545-9551. doi: 10.1021/ja961526f

    8. [8]

      Kolusheva S., Molt O., Herm M., Schrader T., Jelinek R. Selective detection of catecholamines by synthetic receptors embedded in chromatic polydiacetylene vesicles[J]. J.Am.Chem.Soc., 2005,127:10000-10001. doi: 10.1021/ja052436q

    9. [9]

      Molt O., Rubeling D., Schrader T. A selective biomimetic tweezer for noradrenaline[J]. J.Am.Chem.Soc., 2003,125:12086-12087. doi: 10.1021/ja035212l

    10. [10]

      Zadmard R., Arendt M., Schrader T. Multipoint recognition of basic proteins at a membrane model[J]. J.Am.Chem.Soc., 2004,126:7752-7753. doi: 10.1021/ja049191m

    11. [11]

      Hayden C.C., Hwang J.S., Abate E.A., Kent M.S., Sasaki D.Y. Directed formation of lipid membrane microdomains as high affinity sites for his-tagged proteins[J]. J.Am.Chem.Soc., 2009,131:8728-8729. doi: 10.1021/ja901157c

    12. [12]

      R. V. Vico, J. Voskuhl, B. J. Ravoo, Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation, Langmuir 27 (2011)1391-1397.

    13. [13]

      Samanta A., Stuart M.C.A., Ravoo B.J. Photoresponsive capture and release of lectins in multilamellar complexes[J]. J.Am.Chem.Soc., 2012,134:19909-19914. doi: 10.1021/ja3101837

    14. [14]

      J. Huskens, Multivalent interactions at interfaces, Curr. Opin. Chem. Biol. 10 (2006)537-543.

    15. [15]

      Mashhadizadeh M.H., Talemi R.P. Application of diazo-thiourea and gold nano-particles in the design of a highly sensitive and selective DNA biosensor[J]. Chin.Chem.Lett., 2015,26:160-166. doi: 10.1016/j.cclet.2014.09.004

    16. [16]

      O. Crespo-Biel, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, Writing with molecules on molecular printboards, Dalton Trans. (2006)2737-2741.

    17. [17]

      Ludden M.J.W., Reinhoudt D.N., Huskens J. Molecular printboards:versatile platforms for the creation and positioning of supramolecular assemblies and materials[J]. Chem.Soc.Rev., 2006,35:1122-1134. doi: 10.1039/b600093m

    18. [18]

      M.R.de Jong, Huskens J., Reinhoudt D.N. Influencing the binding selectivity of self-assembled cyclodextrin monolayers on gold through their architecture[J]. Chem.Eur.J., 2001,7:4164-4170. doi: 10.1002/(ISSN)1521-3765

    19. [19]

      Guo D.S., Liu Y. Suprannolecular chemistry of p-sulfonatocalix[n] arenes and its biological applications[J]. Acc.Chem.Res., 2014,47:1925-1934. doi: 10.1021/ar500009g

    20. [20]

      Hu X.Y., Peng S., Guo D.S., Ding F., Liu Y. Ding F., Liu Y.Molecular recognition of amphiphilicp-sulfonatocalix[4] arene with organic ammoniums[J]. Supramol. Chem., 2014,27:336-345.

    21. [21]

      Liu Y., Li C.J., Guo D.S., Pan Z.H., Li Z. A comparative study of complexation of β-cyclodextrin, calix[4] arenesulfonate and cucurbit[7] uril with dye guests: fluorescence behavior and binding ability[J]. Supramol.Chem., 2007,19:517-523. doi: 10.1080/10610270601145444

    22. [22]

      Xu Z., Peng S., Wang Y.Y.. Broad-spectrum tunable photoluminescent nanomaterials constructed from a modular light-harvesting platform based on macrocyclic amphiphiles[J]. Adv.Mater., 2016,28:7666-7671. doi: 10.1002/adma.201601719

    23. [23]

      Geng W.C., Liu Y.C., Wang Y.Y.. A self-assembled white-light-emitting system in aqueous medium based on a macrocyclic amphiphile[J]. Chem. Commun., 2017,53:392-395. doi: 10.1039/C6CC09079F

    24. [24]

      Wang Y.X., Guo D.S., Duan Y.C., Wang Y.J., Liu Y.. Amphiphilic p-sulfonatocalix[4] arene as drug chaperone for escorting anticancer drugs[J]. Sci.Rep., 2015,59019. doi: 10.1038/srep09019

    25. [25]

      Guo D.S., Wang K., Liu Y. Selective bindingbehaviors ofp-sulfonatocalixarenes in aqueous solution[J]. J.Incl.Phenom.Macrocycl.Chem., 2008,62:1-21. doi: 10.1007/s10847-008-9452-2

    26. [26]

      Arena G., Casnati A., Contino A.. Water-soluble calixarene hosts that specifically recognize the trimethylammonium group or the benzene ring of aromatic ammonium cations:a combined 1H NMR, calorimetric, and molecular mechanics investigation[J]. Chem.Eur.J., 1999,5:738-744. doi: 10.1002/(ISSN)1521-3765

    27. [27]

      V. Francisco, A. Pineiro, W. M. Nau, L. Garcia-Rio, The true affinities of metal cations to p-sulfonatocalix[4] arene: a thermodynamic study at neutral ph reveals a pitfall due to salt effects in microcalorimetry, Chem. Eur. J. 19(2013) 17809-17820.

    28. [28]

      C. Bonal, Y. Israeli, J. P. Morel, N. Morel-Desrosiers, Binding of inorganic and organic cations by p-sulfonatocalix[4] arene in water: a thermodynamic study, J. Chem. Soc. , Perkin Trans. 2(2001)1075-1078.

    29. [29]

      Guo D.S., Wang L.H., Liu Y. Highlyeffectivebindingofmethylviologendication and its radical cation by p-sulfonatocalix[4, 5] arenes[J]. J.Org.Chem., 2007,72:7775-7778. doi: 10.1021/jo701304g

    30. [30]

      Liu Y., Guo D.S., Zhang H.Y., Ma Y.H., Yang E.C. he structure and thermodynamics of calix[n] arene complexes with dipyridines and phenanthroline in aqueous solution studied by microcalorimetry and NMR spectroscopy[J]. J.Phys.Chem.B, 2006,110:3428-3434. doi: 10.1021/jp0545703

    31. [31]

      Guo D.S., Zhang H.Q., Ding F., Liu Y. Thermodynamic origins of selective binding affinity between p-sulfonatocalix[4, 5] arenes with biguanidiniums[J]. Org.Biomol.Chem., 2012,10:1527-1536. doi: 10.1039/c2ob06313a

    32. [32]

      Koh K.N., Araki K., Ikeda A., Otsuka H., Shinkai S. Reinvestigation of calixarene-based artificial-signaling acetylcholine receptors useful in neutral aqueous (water/methanol)solution[J]. J.Am.Chem.Soc., 1996,118:755-758. doi: 10.1021/ja951488k

    33. [33]

      V. Francisco, N. Basilio, L. Garcia-Rio, Counterion exchange as a decisive factor in the formation of host: guest complexes by p-sulfonatocalix[4] arene, J. Phys. Chem. B 116(2012)5308-5315.

    34. [34]

      N. Douteau-Guével, A. W. Coleman, J. P. Morel, N. Morel-Desrosiers, Complexation of the basic amino acids lysine and arginine by three sulfonatocalix[n] arenes(n=4, 6 and 8) in water: microcalorimetric determination of the Gibbs energies, enthalpies and entropies of complexation, J. Chem. Soc. Perkin Trans. 2(1999)629-634.

    35. [35]

      Kalchenko O.I., Perret F., N.Morel-Desrosiers , Coleman A.W. A comparative study of the determination of the stability constants of inclusion complexes of p-sulfonatocalix[4] arene with amino acids by RP-HPLC and 1H NMR[J]. J.Chem. Soc.Perkin Trans., 2001,2:258-263.  

    36. [36]

      Cui J., Uzunova V.D., Guo D.S.. Effect of lower-rim alkylation of p-sulfonatocalix[4] arene on the thermodynamics of host-guest complexation[J]. Eur.J.Org.Chem., 2010,2010:1704-1710. doi: 10.1002/ejoc.v2010:9

    37. [37]

      Wang L.H., Du P., Yang J., Guo D.S., Liu Y. Binding behaviour and solubilisation ofp-sulfonatocalixarenes to cinchona alkaloids[J]. Supramol.Chem., 2014,26:809-816. doi: 10.1080/10610278.2014.882509

    38. [38]

      Perret F., Nishihara M., Takeuchi T.. Anionic fullerenes calixarenes, coronenes, and pyrenes as activators of oligo/polyarginines in model membranes and live cells[J]. J.Am.Chem.Soc., 2005,127:1114-1115. doi: 10.1021/ja043633c

    39. [39]

      Takeuchi T., Bagnacani V., Sansone F., Matile S. Amphiphilic counterion activators for DNA:stimuli-responsive cation transporters and biosensors in bulk and lipid bilayer membranes[J]. ChemBioChem, 2009,10:2793-2799. doi: 10.1002/cbic.v10:17

    40. [40]

      Basilio N., Garcia-Rio L.. Calixarene-based surfactants:conformational-dependent solvation shells for the alkyl chains[J]. Chem Phys Chem, 2012,13:2368-2376. doi: 10.1002/cphc.v13.9

    41. [41]

      Wang K.P., Chen Y., Liu Y. A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior[J]. Chem.Commun., 2015,51:1647-1649. doi: 10.1039/C4CC08721F

    42. [42]

      N. Basilio, V. Francisco, L. Garcia-Rio, Aggregation of p-sulfonatocalixarene-based amphiphiles and supra-amphiphiles, Int. J. Mol. Sci. 14(2013)3140-3157.

    43. [43]

      N. Basilio, L. Garci'a-Ri'o, M. Marti'n-Pastor, NMR evidence of slow monomer-micelle exchange in a calixarene-based surfactant, J. Phys. Chem. B 114(2010) 4816-4820.

    44. [44]

      Qin Z.B., Guo D.S., Gao X.N., Liu Y. Supra-amphiphilic aggregates formed by p-sulfonatocalix[4] arenes and the antipsychotic drug chlorpromazine[J]. Soft Matter, 2014,10:2253-2263.

    45. [45]

      Hu X.Y., Chen Y., Liu Y. Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride[J]. Chin.Chem.Lett., 2015,26:862-866. doi: 10.1016/j.cclet.2015.01.003

    46. [46]

      Wang Y.X., Liu Y. Supramolecular assemblies based on p-sulfonatocalixarenes and their functions[J]. Acta Chim.Sinica, 2015,73:984-991.

    47. [47]

      S. Fernandez-Abad, M. Pessego, N. Basilio, L. Garcia-Rio, Counterion-controlled self-sorting in an amphiphilic calixarene micellar system, Chem. Eur. J. 22 (2016)6466-6470.

    48. [48]

      Shin M.J., Kim J.D. Reversible chromatic response of polydiacetylene derivative vesicles in D2O solvent[J]. Langmuir, 2016,32:882-888. doi: 10.1021/acs.langmuir.5b03945

    49. [49]

      B. Yoon, S. Lee, J. M. Kim, Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors, Chem. Soc. Rev. 38 (2009)1958-1968.

    50. [50]

      Ahn D.J., Kim J.M. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors[J]. Acc.Chem.Res., 2008,41:805-816. doi: 10.1021/ar7002489

    51. [51]

      Jin T., Fujii F., Ooi Y. Interfacial recognition of acetylcholine by an amphiphilic p-sulfonatocalix[8] arene derivative incorporated into dimyristoyl phosphatidylcholine vesicles[J]. Sensors, 2008,8:6777-6790. doi: 10.3390/s8106777

    52. [52]

      Wang Y.X., Zhang Y.M., Wang Y.L., Liu Y. Multifunctionalvehicleof amphiphilic calix[4] arene mediated by liposome[J]. Chem.Mater., 2015,27:2848-2854. doi: 10.1021/cm504653k

    53. [53]

      Ma J., Meng Q., Hu X.. Synthesis of a water-soluble carboxylatobiphen[4] arene and its selective complexation toward acetylcholine[J]. Org.Lett., 2016,18:5740-5743. doi: 10.1021/acs.orglett.6b03005

    54. [54]

      Von W., Doering E., Knox L.H. Thecycloheptatrienylium(tropylium)ion[J]. J.Am. Chem.Soc., 1954,76:3203-3206. doi: 10.1021/ja01641a027

    55. [55]

      F. Perret, J. P. Morel, N. Morel-Desrosiers, Thermodynamicsof thecomplexation of the p-sulfonatocalix[4] arene with simple model guests in water: a microcalorimetric study, Supramol. Chem. 15(2003)199-206.

    56. [56]

      Y. Marcus, Ions in Water and Biophysical Implications, Springer, Netherlands, Dordrecht, 2012.

    57. [57]

      Mason P.E., Neilson G.W., Dempsey C.E., Barnes A.C., Cruickshank J.M. The hydration structure of guanidinium and thiocyanate ions:implications for protein stability in aqueous solution[J]. Proc.Natl.Acad.Sci., 2003,100:4557-4561. doi: 10.1073/pnas.0735920100

    58. [58]

      So S.M., Moozeh K., Lough A.J., Chin J. Highly stereoselective recognition and deracemization of amino acids by supramolecular self-assembly[J]. Angew. Chem.Int.Ed., 2014,53:829-832. doi: 10.1002/anie.201307410

    59. [59]

      Smithrud D.B., Diederich F. Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships:a general model for solvation effects on apolar binding[J]. J.Am. Chem.Soc., 1990,112:339-343. doi: 10.1021/ja00157a052

    60. [60]

      Shinkai S., Mori S., Koreishi H., Tsubaki T., Manabe O. Hexasulfonated calix[6] arene derivatives:a new class of catalysts, surfactants, and host molecules[J]. J. Am.Chem.Soc., 1986,108:2409-2416. doi: 10.1021/ja00269a045

    61. [61]

      K. Wang, D. S. Guo, H. Q. Zhang, etal. , Highlyeffective bindingof viologensbyp-sulfonatocalixarenes for the treatment of viologen poisoning, J. Med. Chem. 52 (2009)6402-6412.

    62. [62]

      Wang G.M., Li J.H., Zhang X.. Facile in situ syntheses of new templates and formations of three zinc phosphates[J]. Inorg.Chem.Commun., 2014,46:295-300. doi: 10.1016/j.inoche.2014.06.025

    63. [63]

      Zhao H.X., Guo D.S., Liu Y. Binding behaviors of p-sulfonatocalix[4] arene with gemini guests[J]. J.Phys.Chem.B, 2013,117:1978-1987. doi: 10.1021/jp312744d

  • 加载中
    1. [1]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    7. [7]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    8. [8]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    9. [9]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    10. [10]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    11. [11]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    12. [12]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    13. [13]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    14. [14]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    15. [15]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    16. [16]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    17. [17]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    18. [18]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    19. [19]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    20. [20]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

Metrics
  • PDF Downloads(0)
  • Abstract views(756)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return