Citation: Lin Peng, Zhang Nan-Xiang, Li Jing-Jing, Zhang Jing, Liu Jia-Hui, Zhang Bao, Song Jian. To gel or not to gel: A prior prediction of gelation in solvent mixtures[J]. Chinese Chemical Letters, ;2017, 28(4): 771-776. doi: 10.1016/j.cclet.2016.12.024 shu

To gel or not to gel: A prior prediction of gelation in solvent mixtures

  • Corresponding author: Zhang Bao, baozhang@tju.edu.cn Song Jian, songjian@tju.edu.cn
  • Corresponding authors at: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    1These two authors contributed equally to this work
  • Received Date: 14 November 2016
    Revised Date: 2 December 2016
    Accepted Date: 12 December 2016
    Available Online: 7 April 2017

Figures(3)

  • The gelation behaviours of low molecular weight gelators 1,3:2, 5:4, 6-tris(3,4-dichlorobenzylidene)-D-mannitol(G1) and 2,4-(3,4-dichlorobenzylidene)-N-(3-aminopropyl)-D-gluconamide(G2) in 34 solvents have been studied.We found that sample dissolved at low concentrations may become a gel or precipitate at higher concentrations.The Hansen solubility parameters(HSPs)and a Teas plot were employed to correlate the gelation behaviours with solvent properties, but with no success if the concentration of the tests was not maintained constant.Instead, on the basis of the gelation results obtained for the G1 and G2 in single solvents, we studied the gelation behaviours of G1 and G2 in 23 solvent mixtures and found that the tendency of a gelator to form a gel in mixed solvents is strongly correlated with its gelation behaviours in good solvents.If the gelation occurs in a good solvent at higher concentrations, it will take place as well in a mixed solvent(the good solvent plus a poor solvent)at a certain volume ratio.In contrast, if the gelator forms a precipitate in a good solvent at higher concentrations, no gelation is to be observed in the mixed solvents.A gelation rule for mixed solvents is thus proposed, which may facilitate decision making with regard to solvent selection for gel formation in the solvent mixtures in practical applications.
  • 加载中
    1. [1]

      Lan Y., Corradini M.G., Weiss R.G., Raghavan S.R., Rogers M.A.. To gel or not to gel:correlating molecular gelation with solvent parameters[J]. Chem.Soc.Rev., 2015,44:6035-6058. doi: 10.1039/C5CS00136F

    2. [2]

      Terech P., Weiss R.G.. Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chem.Rev., 1997,97:3133-3160. doi: 10.1021/cr9700282

    3. [3]

      Babu S.S., Praveen V.K., Ajayaghosh A.. Functional p-gelators and their applications[J]. Chem.Rev., 2014,114:1973-2129. doi: 10.1021/cr400195e

    4. [4]

      Yu G.C., Yan X.Z., Han C.Y., Huang F.H.. Characterization of supramolecular gels[J]. Chem.Soc.Rev., 2013,42:6697-6722. doi: 10.1039/c3cs60080g

    5. [5]

      Piepenbrock M.O.M., Lloyd G.O., Clarke N., Steed J.W.. Metal-and anion-binding supramolecular gels[J]. Chem.Rev., 2010,110:1960-2004. doi: 10.1021/cr9003067

    6. [6]

      Smith D.K.. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials[J]. Chem.Soc.Rev., 2009,38:684-694. doi: 10.1039/b800409a

    7. [7]

      Steed J.W.. Anion-tuned supramolecular gels:a natural evolution from urea supramolecular chemistry[J]. Chem.Soc.Rev., 2010,39:3686-3699. doi: 10.1039/b926219a

    8. [8]

      van Bommel K.J.C., Friggeri A., Shinkai S.. Organic templates for the generation of inorganic materials[J]. Angew.Chem.Int.Ed., 2003,42:980-999. doi: 10.1002/anie.200390284

    9. [9]

      Liang Y., Tang L.M., Xia Y.. One-pot synthesis of network supported catalyst using supramolecular gel as template[J]. Chin.Chem.Lett., 2010,21:991-994. doi: 10.1016/j.cclet.2010.02.010

    10. [10]

      Zhang W., Xie Z.G.. Fabrication of palladium nanoparticles as effective catalysts by using supramolecular gels[J]. Chin.Chem.Lett., 2016,27:77-80. doi: 10.1016/j.cclet.2015.09.009

    11. [11]

      Gao Y., Kuang Y., Guo Z.F.. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative[J]. J.Am. Chem.Soc., 2009,131:13576-13577. doi: 10.1021/ja904411z

    12. [12]

      Bhattacharya S., Samanta S.K.. Soft functional materials induced by fibrillar networks of small molecular photochromic gelators[J]. Langmuir, 2009,25:8378-8381. doi: 10.1021/la901017u

    13. [13]

      Escuder B., Lusar M.L., Miravet J.F.. Insight on the NMR study of supramolecular gels and its application to monitor molecular recognition on self-assembled fibers[J]. J.Org.Chem., 2006,71:7747-7752. doi: 10.1021/jo0612731

    14. [14]

      Prathap A., Sureshan K.M.. A mannitol based phase selective supergelator offers a simple, viable and greener method to combat marine oil spills[J]. Chem. Commun., 2012,48:5250-5252. doi: 10.1039/c2cc31631e

    15. [15]

      Vibhute A.M., Muvvala V., Sureshan K.M.. A sugar-based gelator for marine oil-spill recovery[J]. Angew.Chem.Int.Ed., 2016,55:7782-7785. doi: 10.1002/anie.201510308

    16. [16]

      Luo M., Wang S., Wang M.L.. Novel organogel harnessing excited-state intramolecular proton transfer process with aggregation induced emission and photochromism[J]. Dyes Pigm., 2016,132:48-57. doi: 10.1016/j.dyepig.2016.04.036

    17. [17]

      Isare B., Petit L., Bugnet E.. The weak help the strong:low-molar-mass organogelators harden bitumen[J]. Langmuir, 2009,25:8400-8403. doi: 10.1021/la804086h

    18. [18]

      Weiss R.G.. The past present, and future of molecular gels.What is the status of the field, and where is it going[J]. J.Am.Chem.Soc., 2014,136:7519-7530. doi: 10.1021/ja503363v

    19. [19]

      Bielejewski M., Łapiński A., Luboradzki R.. J.Tritt-Goc, Solvent effect on 1,2-O-(1-Ethylpropylidene)-a-D-glucofuranose organogel properties[J]. Langmuir, 2009,25:8274-8279. doi: 10.1021/la900467d

    20. [20]

      Hirst A.R., Smith D.K.. Solvent effects on supramolecular gel-phase materials: two-component dendritic gel[J]. Langmuir, 2004,20:10851-10857. doi: 10.1021/la048178c

    21. [21]

      Zhu G.Y., Dordick J.S.. Solvent effect on organogel formation by low molecular weight molecules[J]. Chem.Mater., 2006,18:5988-5995. doi: 10.1021/cm0619297

    22. [22]

      Fan K.Q., Niu L.B., Li J.Q.. Application of solubility theory in bi-component hydrogels of melamine with di(2-ethylhexyl)phosphoric acid[J]. Soft Matter, 2013,9:3057-3062. doi: 10.1039/c3sm27421g

    23. [23]

      Tong C.Q., Fan K.Q., Niu L.B.. Application of solubility parameters in a D-sorbitol-based organogel in binary organic mixtures[J]. Soft Matter, 2014,10:767-772. doi: 10.1039/C3SM52676C

    24. [24]

      Edwards W., Lagadec C.A., Smith D.K.. Solvent-gelator interactions-using empirical solvent parameters to better understand the self-assembly of gel-phase materials[J]. Soft Matter, 2011,7:110-117. doi: 10.1039/C0SM00843E

    25. [25]

      Edwards W., Smith D.K.. Dynamic evolving two-component supramolecular gelsâ€"hierarchical control over component selection in complex mixtures[J]. J. Am.Chem.Soc., 2013,135:5911-5920. doi: 10.1021/ja4017107

    26. [26]

      Wu S., Gao J., Emge T.J., Rogers M.A.. Influence of solvent on the supramolecular architectures in molecular gels[J]. Soft Matter, 2013,9:5942-5950. doi: 10.1039/c3sm50936b

    27. [27]

      Bonnet J., Suissa G., Raynal M., Bouteiller L.. Organogel formation rationalized by Hansen solubility parameters:dos and don'ts[J]. Soft Matter, 2014,10:3154-3160. doi: 10.1039/c4sm00244j

    28. [28]

      Lan Y.Q., Corradini M.G., Liu X.. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene Sorbitol as the gelator[J]. Langmuir, 2014,30:14128-14142. doi: 10.1021/la5008389

    29. [29]

      Yan N., Xu Z.Y., Diehn K.K.. Pyrenyl-linker-glucono gelators.Correlations of gel properties with gelator structures and characterization of solvent effects[J]. Langmuir, 2013,29:793-805. doi: 10.1021/la304957n

    30. [30]

      Gao J., Wu S., Rogers M.A.. Harnessing hansen solubility parameters to predict organogel formation[J]. J.Mater.Chem., 2012,22:12651-12658. doi: 10.1039/c2jm32056h

    31. [31]

      Raynal M., Bouteiller L.. Organogel formation rationalized by Hansen solubility parameters[J]. Chem.Commun., 2011,47:8271-8273. doi: 10.1039/c1cc13244j

    32. [32]

      Xu H.Q., Song J., Tian T., Feng R.X.. Estimation of organogel formation and influence of solvent viscosity and molecular size on gel properties and aggregate structures[J]. Soft Matter, 2012,8:3478-3486. doi: 10.1039/c2sm07387k

    33. [33]

      Diehn K.K., Oh H., Hashemipour R., Weiss R.G., Raghavan S.R. Insights into organogelation and its kinetics from Hansen solubility parameters.Toward a priori predictions of molecular gelation[J]. Soft Matter, 2014,10:2632-2640. doi: 10.1039/c3sm52297k

    34. [34]

      Yan N., Xu Z.Y., Diehn K.K.. How do liquid mixtures solubilize insoluble gelators? Self-assembly properties of pyrenyl-linker-glucono gelators in tetrahydrofuran-water mixtures[J]. J.Am.Chem.Soc., 2013,135:8989-8999. doi: 10.1021/ja402560n

    35. [35]

      Bonnet J., Suissa G., Raynal M., Bouteiller L.. Organogel formation rationalized by Hansen solubility parameters:influence of gelator structure[J]. Soft Matter, 2015,11:2308-2312. doi: 10.1039/C5SM00017C

    36. [36]

      Shen H.H., Niu L.B., Fan K.Q.. Application of solubility parameters in 1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol organogel in binary organic mixtures[J]. Langmuir, 2014,30:9176-9182. doi: 10.1021/la5019532

    37. [37]

      Zhang X.X., Deng P.F., Feng R.X., Song J.. Novel gelatinous shape-stabilized phase change materials with high heat storage density[J]. Sol.Energy Mater.Sol.Cells, 2011,95:1213-1218. doi: 10.1016/j.solmat.2011.01.025

    38. [38]

      Koshima H., Matsusaka W., Yu H.. Preparation and photoreaction of organogels based on benzophenone[J]. J.Photochem.Photobiol.A Chem., 2003,156:83-90. doi: 10.1016/S1010-6030(02)00431-8

  • 加载中
    1. [1]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    2. [2]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    3. [3]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    4. [4]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    5. [5]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    6. [6]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    7. [7]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    8. [8]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    9. [9]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    10. [10]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    11. [11]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    12. [12]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    13. [13]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    14. [14]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    15. [15]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    16. [16]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    17. [17]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    18. [18]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    19. [19]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    20. [20]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

Metrics
  • PDF Downloads(0)
  • Abstract views(757)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return